Dissolution and carbonation of activated serpentine for combined capture and storage

Mischa Werner¹, Lilian Gasser¹, Daniela Zingaretti², Hari Subrahmaniam¹, Marco Mazzotti¹

TCCS-6
Accelerated Carbonation for Environmental and Materials Engineering
Trondheim, Norway, 14 – 16 June 2011

¹) Institute of Process Engineering, ETHZ
²) University of Rome, Thor Vergata
Outline

- Flue gas mineralization – the concept
- Experimental setup and material
- Capture via mineralization:
 - EQ3/6 equilibrium simulations
 - Dissolution experiments
 - Dissolution model
- Storage via mineralization:
 - EQ3/6 equilibrium simulations
Flue gas mineralization within a CCS system

Traditional approach

after Verduyn et al. 2009, TCCS5, Trondheim
Flue gas mineralization within a CCS system

Novel approach

after Verduyn et al. 2009, TCCS5, Trondheim
Mineralization plant

Key:
- regular capillary
- heated capillary
- isolated from rack by flexible connections

100% CO2
90% N2
10% CO2

30-180°C

and make-up

sample withdrawal

gas analysis (MS)

liquid analysis (IC)

pH probe

to sample collector (& offline analysis)

to vent
Mineralization plant

$P_{CO_2} = 11 - 150$ bar

Gas phase:

100% CO$_2$

Temperature:

30-180°C
Mineralization plant

$P_{CO_2} = 0.36 - 4\text{ bar}$

Synthetic flue gas:
$10\%_{vol} CO_2$ in N_2

Key:
- regular capillary
- heated capillary
- isolated from rack by flexible connections

30-180$^\circ C$
Activated serpentine

- **Mg$_{2.42}$Fe$_{0.58}$Si$_2$O$_5$(OH)$_4$**
- dry ground to <125 µm
- thermal activation at 600°C
- 1.5 mol H$_2$O per mole serpentine removed

- fractionation by dry sieving
- fines removal w/ EtOH
- micropores (2-3 nm) measured (BET method)
Capture part: EQ3/6 equilibrium simulations

CO₂ solubility as function of T and [Mg²⁺], at different P_{CO₂} levels

using flue gas (P_{tot} = 10P_{CO₂}):

- If flue gas used: CO₂ solubility predominately sensitive to [Mg²⁺]
 - even at low P_{CO₂} high CO₂ loads possible

using pure CO₂:

- If pure CO₂ used: low T favorable, highest P_{CO₂} not worth the while

\[P_{CO₂} = \begin{align*} & 4 \text{ bar} \\ & 1.5 \text{ bar} \\ & 0.36 \text{ bar} \\ & 120 \text{ bar} \\ & 60 \text{ bar} \\ & 11 \text{ bar} \end{align*} \]
Act. serpentine dissolution experiments

Mg$_{2.42}$Fe$_{0.58}$Si$_2$O$_5$(OH)$_4$

Magnesium concentration and conversion at 30°C:

\rightarrow Dissolution using flue gas similarly effective as with pure CO$_2$

\rightarrow Complex dissolution mechanism: Drastic slowdown after fast initial phase
Olivine vs activated serpentine dissolution

$$T = 30^\circ\text{C}, \ P_{\text{CO}_2} = 0.36 \ \text{bar}, \ \text{flue gas mode}, \ 20-63 \ \mu\text{m fraction}$$

→ Olivine so far “best candidate” Mg-silicate (most reactive)*

e.g. O’Connor et al., 2005, Albany Research Center
Dissolution model for natural serpentine

Natural serpentine dissolves acc. to Shrinking core model*

- Population balance:
 \[\frac{\partial n}{\partial t} - \frac{\partial D n}{\partial L} = 0 \]
 \(n = \) particle population, PSD
 \(D = \frac{dL}{dt}, \) dissolution rate

- Dissolution rate:
 \[D = f \left(L, L_0 \right) \]
 not constant, diffusion controls

- Solute mass balance:
 \[V \frac{dc}{dt} = \frac{dm}{dt} - Qc \]
 \(c = \) solute concentration
 \(m = \) mass of particle population

*e.g. Teir et al., 2007, Int J Miner Process 83;
Van Essendelft et al., 2009/2010, Ind Eng Chem Res 48/49
Dissolution model for activated serpentine

- Presence of micropores and altered crystal structure cause complex, incongruent dissolution behavior
- \(\text{Mg}_{2.42}\text{Fe}_{0.58}\text{Si}_2\text{O}_5(\text{OH})_4 \rightarrow \text{Silica} \) detected in reactor solution:

![Graph showing Mg and silica concentrations over time at different pressures](image1)

![Graph showing conversion percentage over time at different pressures](image2)
Dissolution model for activated serpentine

- Presence of micropores and altered crystal structure cause complex, incongruent dissolution behavior

\[\text{Mg}_{2.42}\text{Fe}_{0.58}\text{Si}_2\text{O}_5(\text{OH})_4 \rightarrow \text{Iron} \text{ absent in reactor solution:} \]

\[T=60^\circ\text{C} \]

\[\rightarrow \text{Preferential leaching of} \quad \text{Mg}^{2+} \]
Dissolution model for activated serpentine

- Presence of micropores and altered crystal structure cause complex, incongruent dissolution behavior

- Back to single particle model to explore the role of:
 - diffusion
 - counterdiffusion
 - ash layer
 - unreacted core
 - pores
 - reactants (H\(^+\))
 - products (Mg\(^{2+}\), silica)

- PSD discretized to perform preliminary simulations
- Single experiments can be fitted nicely, but fitting multiple experiments yet an issue
Dissolution model for activated serpentine

Measured and modelled Mg²⁺ profile and conversion:

\[T = 90^\circ C, P_{CO_2} = 0.36 \text{bar, flue gas} \]
Serpentine dissolution experiments

T=30°C

T=60°C

T=90°C
Storage part: EQ3/6 equilibrium simulations

Thermodynamic driving force (Q/K) as function of T and [Mg^{2+}]:

$P_{CO2} = 0.36 \text{ bar, flue gas}$

$P_{CO2} = 60 \text{ bar, pure CO}_2$

\rightarrow Higher T favors carbonate precipitation

\rightarrow High P_{CO2} not beneficial, flue gas conditions preferable!
Concluding remarks

- CO$_2$ capture into aqueous solution promoted by presence of Mg$^{2+}$ from the dissolution process
- Activated serpentine dissolution fast even at low P$_{CO_2}$, thereby preferential leaching of Mg$^{2+}$
- Higher T promotes Mg leaching and reduces carbonate solubility
- Thermodynamic driving force for precipitation higher under flue gas conditions
Acknowledgements

Funding support by:

• Shell Global Solutions Int. Amsterdam, special thanks to Dr. Marcel Verduyn and Gert van Mossel
• Swiss National Fund for Science
• Competence Center Energy and Mobility, CH
• Competence Center Environment and Sustainability, CH
Thanks for your attention

- Flue gas mineralization – the concept
- Experimental setup and material
- Capture via mineralization:
 - EQ3/6 equilibrium simulations
 - Dissolution experiments
 - Dissolution model
- Storage via mineralization:
 - EQ3/6 equilibrium simulations