Potential for low-temperature capture technologies in different CCS applications

2011-06-16 David Berstad, <u>Petter Nekså</u>, Rahul Anantharaman petter.neksa@sintef.no SINTEF Energy Research

Presentation outline

- Introduction and definitions
- Differences in capture conditions within different CCS applications
- Review of examples on application of low-temperature concepts for some of the capture conditions
 - Oxy-combustion: Flue gas separation
 - Pre-combustion: IGCC syngas separation
 - Post-combustion: CO₂ antisublimation from flue gas
- Discussion and concluding remarks

Cryogenic often used instead of low-temperature in literature, sometimes with a negative notion

"Use of **cryogenic processes** – is **only worth considering where there is a high concentration of CO**₂ in the flue gas, as could be achieved in future IGCC designs. Cryogenic processes have the advantage of producing liquid CO_2 ready for transportation by pipeline"

Riemer P. Greenhouse gas mitigation technologies, an overview of the CO₂ capture, storage and future activities of the IEA Greenhouse Gas R&D programme, 37(6–8), 665–70 (1996).

"Cryogenic separation needs too much energy and appears to be too expensive [...] In the end, only physical and chemical (or mixed) absorption methods seem suitable for large power plants..."

Kanniche, M. and C. Bouallou. CO₂ capture study in advanced integrated gasification combined cycle. Applied Thermal Engineering, 27(16), 2693–2702 (2007).

"The basic advantage of cryogenic processes is that, provided the CO_2 feed is properly conditioned, high recovery of CO_2 and other feed constituents is possible. This may also facilitate the final use or sequestering of CO_2 . However, cryogenic processes are **inherently energy intensive**."

Meisen, A, Shuai X. Research and development issues in CO₂ capture. Energy Conversion and Management, 38(1), S37–S42 (1997).

This, at least, does not apply to all capture conditions! And, do we actually enter cryogenic temperatures?

Cryogenic vs. low-temperature, definitions and terminology

Generally inconsistent use of the term 'cryogenic' in literature Cryogenic temperatures:

 Common scientific definition: Temperatures below -153°C (120 K) IIR Int Dict Important to distinguish between 'cryogenic' and 'low-temperature' Low-temperature CO₂ capture:

- Temperatures below 0°C
- Liquid phase separation, temp above the CO_2 triple point temp (\geq -56°C)
 - > Applied to flue gas and synthesis gas above CO_2 triple point pressure (5.2 bar)
 - > Implies condensation of CO_2 without the use of circulating solvents/chemicals
 - > Separation of CO_2 -rich liquid phase from non-condensables (N₂, O₂, Ar, H₂ etc.)
 - CO₂ in liquid phase, pressurisation by pumping instead of multi-stage gas compression
- Solid phase sep, below the CO₂ triple p. temp (< -56°C) but above -120°C
 - Implies antisublimation / freeze-out of CO₂ as solids from non-condensables
 - > Can be applied to flue gas at pressures below CO_2 triple point pressure (5.2 bar)

CO₂ capture conditions

CO₂ capture conditions

CO₂ capture conditions

S International CCS Research Centre

Oxy-combustion CO₂ capture

Amann J, Kanniche M, Bouallou C. Natural gas combined cycle power plant modified into an O_2/CO_2 cycle for CO_2 capture, Energy Conversion and Management 50(3), 510–521 (2009).

Pipitone G, Bolland O. Power generation with CO₂ capture: Technology for CO₂ purification, Int. Journal of GHG Control. 3(5): 528–534 (2009).

S International CCS Research Centre

8

Oxy-combustion CO₂ capture

Amann J, Kanniche M, Bouallou C. Natural gas combined cycle power plant modified into an O_2/CO_2 cycle for CO_2 capture, Energy Conversion and Management 50(3), 510–521 (2009).

Pipitone G, Bolland O. Power generation with CO₂ capture: Technology for CO₂ purification, Int. Journal of GHG Control. 3(5): 528–534 (2009).

S International CCS Research Centre

Oxy-combustion CO₂ capture

Amann J, Kanniche M, Bouallou C. Natural gas combined cycle power plant modified into an O_2/CO_2 cycle for CO_2 capture, Energy Conversion and Management 50(3), 510–521 (2009).

Pipitone G, Bolland O. Power generation with CO₂ capture: Technology for CO₂ purification, Int. Journal of GHG Control. 3(5): 528–534 (2009).

International CCS Research Centre

Syngas from coal gasification (IGCC)

Should be competitive with physical solvents

Berstad D, Nekså P, Anantharaman R. CO₂ capture from IGCC by low-temperature syngas separation and partial condensation of CO₂. TCCS-6 (2011)

International CCS Research Centre

Post-combustion capture by antisublimation (Clodic et al., 2005)

Fig. 2: Layout of the CO₂ capture system (Clodic and Younes, 2002) Table 3 Summary of the cooling and electrical energies needed for CO₂ capture by anti-sublimation

	Cooling energy needed by the FG (kJ/kg dFG)	Refrigerating system COP	Electrical energy (kJ/kg dFG)	Electrical energy (kJ/kg CO ₂)
CS1 from 50 to 23°C	256.76		5.13	30.3
CS2 HT	25.58	High 19.7	1.3	7.6
from 23 to 13.5°C	25.56	Low 12.3	2.1	12.3
CS2 LT	21.14	High 9.9	2.1	12.6
from 13.5 to 3°C	21.14	Low 6.2	3.4	20.1
Cooling	21.26	High 2.8	7.9	46.4
to -40°C	21.26	Low 1.75	12.5	73.7
Cooling	21.26	High 0.91	132.6	781.6
to -120°C	120.7	Low 0.57	211.7	1'247.8
Defrecting		High 0.91		- 254.8
Defrosting		Low 0.57		- 159.6
Auxiliaries			4.1	24.0
Total		High		647.7
Total		Low		1,248.6

Table 2 Boiler flue gases composition (Clodic et al., 2004b)

	N_2	CO ₂	O ₂	H ₂ O	
Initial composition					
%mass	68.92	15.47	6.75	8.86	
% vol	70	10	6	14*	
Comp	Composition after water removal				
%mass	75.62	16.97	7.41	0	
% vol	81.39	11.63	6.98	0	

*The high water content is due after-treatment systems typically used on a boiler flue gases

Fig. 7: Energy consumption function of the CO₂ concentration for a 90% CO₂ capture efficiency (Younes, 2003b)

Clodic D et al. CO₂ capture by anti-sublimation .Thermo-economic process evaluation. 4th Annual Conference on Carbon Capture & Sequestration, May 2–5, 2005, Alexandria (VA), USA.

CCS International CCS Research Centre

Post-combustion capture by antisublimation (Clodic et al., 2005)

Fig. 2: Layout of the CO_2 capture system (Clodic and Younes, 2002) Table 3 Summary of the cooling and electrical energies needed for CO_2 capture by anti-sublimation

	(Clo	dic et al., 2004b)		
	Cooling energy needed by the FG (kJ/kg dFG)	Refrigerating system COP	Electrical energy (kJ/kg dFG)	Electrical energy (kJ/kg CO2)
CS1 from 50 to 23°C	256.76		5.13	30.3
CS2 HT	25.58	High 19.7	1.3	7.6
from 23 to 13.5°C	23.30	Low 12.3	2.1	12.3
CS2 LT	21.14	High 9.9	2.1	12.6
from 13.5 to 3°C	21.14	Low 6.2	3.4	20.1
Cooling	21.26	High 2.8	7.9	46.4
to -40°C	21.20	Low 1.75	12.5	73.7
Cooling	120.7	High 0.91	132.6	781.6
to -120°C	120.7	Low 0.57	211.7	1'247.8
Defeating		High 0.91		- 254.8
Defrosting		Low 0.57		- 159.6
Auxiliaries			4.1	24.0
Total		High		647.7
Total		Low		1,248.6

Table 2 Boiler flue gases composition (Clodic et al., 2004b)

	N ₂	CO ₂	O ₂	H ₂ O
Initial composition				
%mass	68.92	15.47	6.75	8.86
% vol	70	10	6	14*
Composition after water removal				
%mass	75.62	16.97	7.41	0
% vol	81.39	11.63	6.98	0

*The high water content is due after-treatment systems typically used on a boiler flue gases

Fig. 7: Energy consumption function of the CO₂ concentration for a 90% CO₂ capture efficiency (Younes, 2003b)

Clodic D et al. CO₂ capture by anti-sublimation .Thermo-economic process evaluation. 4th Annual Conference on Carbon Capture & Sequestration, May 2–5, 2005, Alexandria (VA), USA.

International CCS Research Centre

Summary

BIGCCS International CCS Research Centre

Conclusions

- Substantial difference in CO₂ capture conditions with respect to concentrations and pressure.
- Low-temperature capture technologies can in principle be applied for most of these conditions
- For certain applications, conceptual studies indicate competitive energy performance
- To obtain a complete benchmarking between lowtemperature and baseline technologies, global simulations, with equalised boundary conditions and detail levels, must be performed
- Finally, techno-economic comparisons based on realistic cost data for full-scale processes must be carried out

Acknowledgements

This publication has been produced with support from the BIGCCS Centre, performed under the Norwegian research program *Centres for Environment-friendly Energy Research (FME)*. The authors acknowledge the following industrial partners for their contributions: Aker Solutions, ConocoPhilips, Det Norske Veritas, Gassco, Hydro, Shell, Statkraft, Statoil, TOTAL, GDF SUEZ and the Research Council of Norway (193816/S60).

