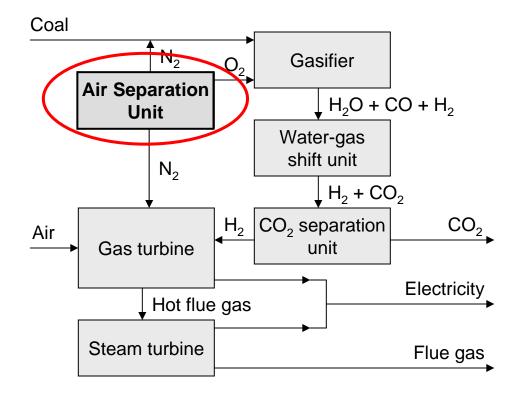
Applying novel distillation techniques to the ASU of an IGCC with pre-combustion CO₂-capture

A HIDiC set-up for cryogenic total reflux experiments

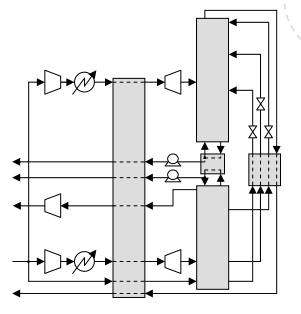

Leen van der Ham¹, Michael Drescher² and Signe Kjelstrup¹

Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
SINTEF Energy Research, Kolbjørn Hejes vei 1D, 7465 Trondheim, Norway

June the 16th, 2011 6th Trondheim CCS conference

DECARBit – project overview* IGCC with pre-combustion CO₂-capture

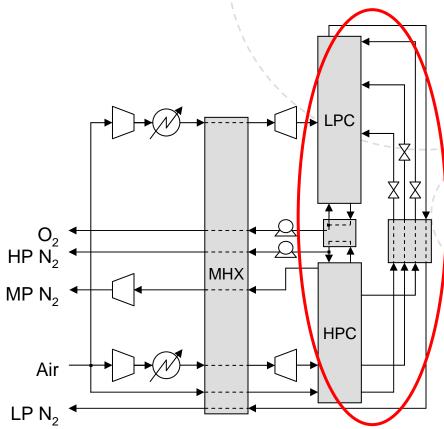
DECARBit looks at:


- 1. Process integration
- 2. CO_2 separation unit
- 3. Air Separation Unit
- 4. Gas turbine
- 5. Pilot plant testing

Røkke and Langørgen, Energy Procedia 1, 1435-1442 (2009)

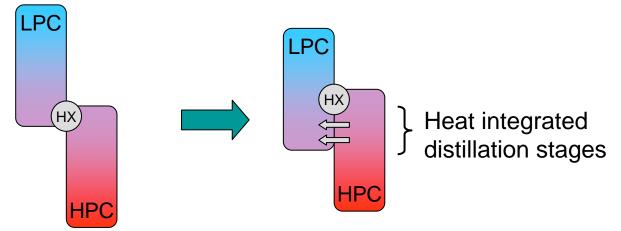
DECARBit – SP 3: Advanced oxygen separation technologies

- Three alternatives are explored:
 - 1. Oxygen transfer membranes
 - 2. Sorbent based technologies
 - 3. Advanced cryogenic techniques


- Cryogenic techniques focuses on:
 - 1. Integration with other IGCC-units
 - 2. Main heat exchanger
 - 3. Novel distillation techniques

Cryogenic Air Separation Unit Two-column design

- Main process units
 - Main heat exchanger (MHX)
 - Low pressure column (LPC)
 - High pressure column (HPC)
- Distillation columns
 - Thermally coupled
 - Reboiler for LPC
 - Condenser for HPC

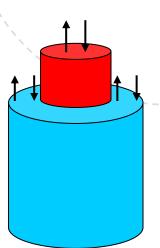


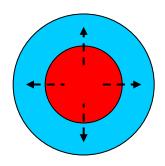
- Localization of irreversibilities using exergy analysis:
 - 26% is located in the distillation section^{*}

* van der Ham and Kjelstrup, Energy 35, 4731-4739 (2010)

Novel distillation techniques Heat integrated distillation columns (HIDiC)

- Improving distillation efficiency:
 - Thermal energy transfer along the column height
- Applied to the columns of a cryogenic ASU:


- Simulations predict a 23% reduction in irreversibilities*
 - But: uncertainties in some design parameters


van der Ham and Kjelstrup, Ind. Eng. Chem. Res., accepted (2011)

🖸 NTNI I

Heat integrated distillation stages Practical implementation

- Cylindrical inner column
- Annular outer column
- Equipped with structured packing
- Difference in operating pressures
- Heat flux through inner wall
- Additional evaporation/condensation
- Flow rates vary along column height

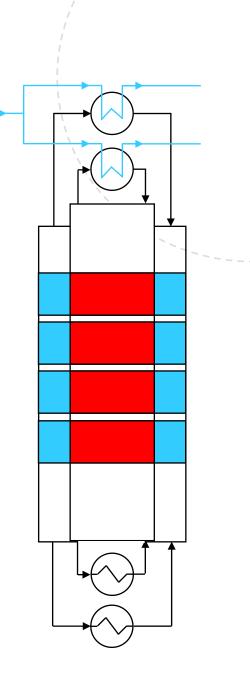
Uncertain design parameters Detailed problem background

- Performance of an annular column
 - More wall area per column volume
 - More sensitive to maldistributions in angular direction
- Overall heat transfer coefficient
 - Depends on operating conditions
 - Varies along the column height
- Effect of an additional heat flux

🖸 NTNU

www.ntnu.no

- Introduces radial temperature gradients
- Theory predicts an effect on the diffusional fluxes*
- Experimental investigations required!


van der Ham, Bock and Kjelstrup, Chem. Eng. Sci. 65, 2236-2248 (2010)

Experimental set-up Requirements and goals

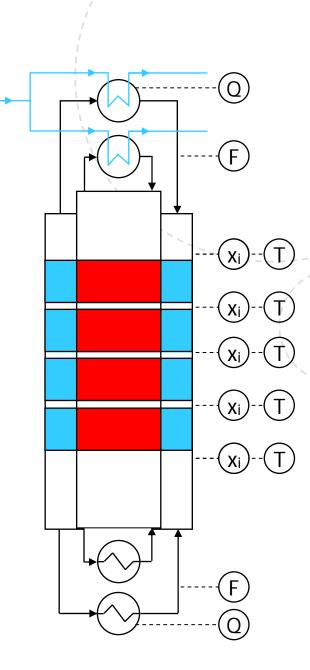
- Suitable for air separation
 - Cryogenic temperatures
 - Elevated pressures
 - High purity oxygen
- Assess the uncertain design parameters
 - Measured quantities
 - Achieved separation efficiency
 - Radial and angular gradients/maldistribution
 - Transferred thermal energy
 - Varying operating conditions
 - Column pressures
 - Column loadings

Experimental set-up General design properties

- Two separate closed systems
- Total reflux operation
- Binary mixture of N₂/O₂
- Operational properties
 - Condensers
 - Plate fin heat exchangers
 - up to 550 kg/h liquid N₂
 - Reboilers
 - 20 kW electrical heaters
 - Maximum pressures
 - Outer column: 5 bar
 - Inner column: 20 bar

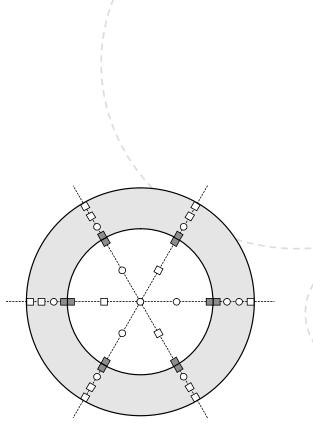
Experimental set-up Column characteristics

- Column dimensions
 - Inner diameter: 14 cm
 - Outer diameter: 22 cm
 - Column height: 3.5 m

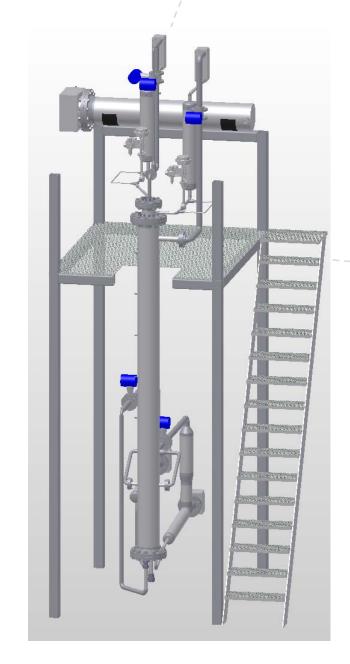

- Packing properties
 - Corrugated sheets
 - 1.6 m Montz B1-500
 - 6 theoretical stages
 - F-factor up to 2.0 $Pa^{\frac{1}{2}}$

NTNU

Experimental set-up Measurement strategy


- Separation efficiency
 - Top and bottom compositions (x_i)
- Radial and angular gradients
 - Compositions and temperatures (T)
 - In both vapour and liquid phases
 - Measurements at several height levels
 - Multiple measurements per height level
- Thermal energy transfer
 - Reboiler and condenser duties (Q)
 - Top and bottom flow rates (F)

Experimental set-up Instrumentation


- External instrumentation
 - 7 flow meters
 - 4 control valves
 - 12 temperature sensors
 - 4 pressure difference sensors
- Internal instrumentation
 - 5 measurement heights
 - 2 absolute pressure sensors
 - 8 pressure difference sensors
 - 87 temperature sensors
 - 85 gas chromatography sample points

measurement points at height level 4 (counting from top)

Experimental set-up

www.ntnu.no

Conclusion

- Heat integrated stages can improve the ASU efficiency
- Experiments are needed for reliable predictions
- A set-up is designed to obtain the required data
- The set-up is under construction as we speak
- Experimental results will be available this autumn

Acknowledgements

- SINTEF Energy Research
 - Petter Nekså
 - Helge Johansen
 - Gunnar Lohse
 - Håvard Rekstad
 - Harald Mæhlum
- Air Liquide
 - Benoit Davidian

SINTEF

 The research leading to these results has received funding from the European Community's 7th Framework Programme (FP7/2007-2013) under grant agreement number 211971 (The DECARBit project).

Thanks for your attention

