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DECARBit looks at:
1. Process integration
2. CO2 separation unit
3. Air Separation Unit
4. Gas turbine
5. Pilot plant testing

DECARBit – project overview* 

IGCC with pre-combustion CO2 -capture
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* Røkke and Langørgen, Energy Procedia 1, 1435-1442 (2009)
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DECARBit – SP 3: 
Advanced oxygen separation technologies

• Three alternatives are explored:
1. Oxygen transfer membranes
2. Sorbent based technologies
3. Advanced cryogenic techniques

• Cryogenic techniques focuses on:
1. Integration with other IGCC-units
2. Main heat exchanger
3. Novel distillation techniques
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• Main process units
– Main heat exchanger (MHX)
– Low pressure column (LPC)
– High pressure column (HPC)

• Distillation columns
– Thermally coupled



 

Reboiler for LPC


 

Condenser for HPC

• Localization of irreversibilities using exergy analysis:
– 26% is located in the distillation section*
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* van der Ham and Kjelstrup, Energy 35, 4731-4739 (2010)
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Novel distillation techniques 
Heat integrated distillation columns (HIDiC)

• Improving distillation efficiency:
– Thermal energy transfer along the column height

• Applied to the columns of a cryogenic ASU:

• Simulations predict a 23% reduction in irreversibilities*

– But: uncertainties in some design parameters
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* van der Ham and Kjelstrup, Ind. Eng. Chem. Res., accepted (2011)
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Heat integrated distillation stages 
Practical implementation

• Cylindrical inner column

• Annular outer column

• Equipped with structured packing

• Difference in operating pressures

• Heat flux through inner wall

• Additional evaporation/condensation

• Flow rates vary along column height
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Uncertain design parameters 
Detailed problem background 

• Performance of an annular column
– More wall area per column volume
– More sensitive to maldistributions in angular direction

• Overall heat transfer coefficient
– Depends on operating conditions 
– Varies along the column height

• Effect of an additional heat flux
– Introduces radial temperature gradients
– Theory predicts an effect on the diffusional fluxes*

• Experimental investigations required!

* van der Ham, Bock and Kjelstrup, Chem. Eng. Sci. 65, 2236-2248 (2010)
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Experimental set-up 
Requirements and goals

• Suitable for air separation
– Cryogenic temperatures
– Elevated pressures
– High purity oxygen

• Assess the uncertain design parameters
– Measured quantities



 

Achieved separation efficiency


 

Radial and angular gradients/maldistribution


 

Transferred thermal energy

– Varying operating conditions


 

Column pressures


 

Column loadings 
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Experimental set-up 
General design properties

• Two separate closed systems
• Total reflux operation
• Binary mixture of N2 /O2

• Operational properties
– Condensers



 

Plate fin heat exchangers


 

up to 550 kg/h liquid N2

– Reboilers


 

20 kW electrical heaters

– Maximum pressures


 

Outer column: 5 bar


 

Inner column: 20 bar
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Experimental set-up 
Column characteristics

• Column dimensions
– Inner diameter: 14 cm
– Outer diameter: 22 cm
– Column height: 3.5 m
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• Packing properties
– Corrugated sheets 
– 1.6 m Montz B1-500
– 6 theoretical stages
– F-factor up to 2.0 Pa½
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Experimental set-up 
Measurement strategy

• Separation efficiency
– Top and bottom compositions (xi )

• Radial and angular gradients
– Compositions and temperatures (T)
– In both vapour and liquid phases
– Measurements at several height levels
– Multiple measurements per height level

• Thermal energy transfer
– Reboiler and condenser duties (Q)
– Top and bottom flow rates (F)
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Experimental set-up 
Instrumentation

• External instrumentation 
– 7 flow meters
– 4 control valves
– 12 temperature sensors
– 4 pressure difference sensors

• Internal instrumentation
– 5 measurement heights
– 2 absolute pressure sensors
– 8 pressure difference sensors
– 87 temperature sensors
– 85 gas chromatography sample points

measurement points
at height level 4

(counting from top)
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Experimental set-up
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Conclusion

• Heat integrated stages can improve the ASU efficiency

• Experiments are needed for reliable predictions

• A set-up is designed to obtain the required data

• The set-up is under construction as we speak

• Experimental results will be available this autumn
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