Pursuing the pre-combustion route in oil refineries -The impact on fired heaters

Trondheim 6th CCS-conference Torleif Weydahl, Morten Seljeskog, Rahul Anantharaman

Fired heaters contribute to over 65% of the CO_2 emissions in oil refineries and 4% of the global CO_2 emissions [2]

Courtesy of www.ori.milano.it

[2] Foster-Wheeler, CO2 abatement in oil refineries: Fired heaters., Technical Report, PH3/31, IEA Green House Gas R&D Programme, 2000.

Pre-combustion CO₂ capture in oil refineries

The pre-combustion alternative in previous reports:

- is described as feasible, but with a somewhat higher cost than corresponding oxy-fuel or post-combustion options
- The integration aspect has not been fully taken into account
- The level of detail is also limited in order to map technical challenges

Objective

The main objective:

- H₂-fired heaters: Low-cost retrofit or high-cost complete rebuild?
- Present sub-objective:
 - Investigate the effect of burning H₂ instead of refinery gas in the radiant section burners:
 - Radiative heat load distribution on the tubes
 - Emissions
 - Heat transported to the convective section
- Method: Computational Fluid Dynamics (CFD)

3 cases with the same thermal power load:

1. Base case:

Refinery gas as fuel:

- H₂:
- CH₄:
- C₂H₆:
- C₃H₈*:
- 2. H₂-case:

- 20 mole%
- 45 mole%
- 10 mole%
- 25 mole%
- 100% H_2 as fuel
- 3. H_2/H_2 O-case:
- H_2 -case with steam dilution such that the air/fuel momentum ratio is matching the base case (~11mole% H_2O)

Fired heaters are complex process units

We apply a generic model of the radiant section of the fired heater

Input data

Furnace

BIGCCS

- Height x Width: 8.5 m x 2 m
- Outlet duct width: 0.6 m
- Refinery Tubes
 - Tube wall thickness: 5 mm
 - Inner temperature: 873 K
 - Thermal conductivity: 31 W/(m K)
 - Heat transfer (inner): 200 W/(m2 K)
 - Emissivity: 0.95
- Swirl burner (same for all cases)
 - Heat input: 1.8 MW
 - Excess air number: 1.1
 - Burner/fuel pipe diam.: 20 cm/3.3 cm

The model

- Flow and combustion modeling with in-house code SPIDER:
 - Mass, momentum, energy and species transport
 - k-epsilon model for turbulence
 - Eddy Dissipation Concept with finite rate chemistry (53 species, 325 reactions)
 - Discrete ordinates method (in 24 directions) with WSGG for radiation
- The following effects are neglected in the modeling:
 - Soot and particles
 - Buoyancy
 - Differential diffusion effects

Results: Flame structure

H₂-cases:

- Longer flame due to higher fuel outlet velocity
- The flames are more attached to the burner
- H_2/H_2O -case:
 - Shorter flame than H₂-case due to cooling
- Recirculation zones

Results: Average net heat transfer

Overall heat distribution

- The same average heat transfer to the wall
- Differences in heat output to the convective section not significant

	base	H_2	$\mathrm{H}_{2}/\mathrm{H}_{2}\mathrm{O}$
$\overline{\dot{Q}} \; [\mathrm{kW/m^2}]$	21.3	21.2	20.8
$\dot{Q}_{ m max} \; [{ m kW/m^2}]$	30.0	28.8	26.3
$\overline{T}_{\mathrm{out}}$ [K]	1011	1044	1052
$C_{p,\mathrm{out}} \mathrm{[J/kg \ K]}$	1352	1384	1406

What about the emissions?

	base	H_2	$\mathrm{H}_{2}/\mathrm{H}_{2}\mathrm{O}$
$\overline{\dot{Q}} \; [\mathrm{kW/m^2}]$	21.3	21.2	20.8
$\dot{Q}_{\rm max} \; [{\rm kW/m^2}]$	30.0	28.8	26.3
$\overline{T}_{\mathrm{out}}$ [K]	1011	1044	1052
$C_{p,\text{out}} [\text{J/kg K}]$	1352	1384	1406
T_{flame} [K]	2077	2286	2140
$NO_{x,out}$ [ppm dry]	79.5	78.6	38.4
$NO_{x,out} [10^{-6} \text{ kg/s wet}]$	53.7	41.1	20.2

Despite higher flame temperature, the NO_x emissions are similar/lower in the H₂-cases than in the base case!

A brief introduction NO_x

► Thermal NO_x

- Highly temperature dependent
- Relatively slow
- The important "Zeldovich" reactions are:

 $O + N_2 \rightarrow NO + N,$ $N + O_2 \rightarrow NO + O,$ $N + OH \rightarrow NO + H,$ Prompt NO_x

- Less temperature dependent
- Fast
- The important formation step is:

 $CH + N_2 \rightarrow HCN + N,$

And back to the emissions...

Are the higher base case NO_x emissions caused by the prompt NO_x mechanism?

► The rapid increase in NO_x-flow → Prompt NO_x

The cumulative distribution of NO production with temperature

Two examples from experiments with swirl-burners in the literature

Schefer et al. (2002): CH_4 with H_2 addition up to 45%:

- No significant increase in NO with H₂ addition
- **•** Rørtveit et al. (2002): CH_4 with H_2 addition up to 20%:
 - Slight increase in NO_x with H₂ addition

To our knowledge: No experimental studies exist that compare NO_x emissions from 100% H₂ with 100% natural gas in swirl-stabilized burners at equal excess air ratio and thermal input. [Comment added after the presentation: See Lowe et al. "Technology Assessment of Hydrogen Firing of Process Heaters", Energy Procedia 4 (2011) 1058-1065: They compared NO_x emissions from a flat flame burner up to 100% H₂ and an ultra low NO_x burner up to 95% H₂ with corresponding 100% natural gas at equal thermal input. On mass basis, they found lower NO_x emissions with the ultra low NO_x burner at 95% H₂ than with 100% natural gas.]

16

Summary and further work

The results indicate that hydrogen can replace refinery fuel with

- the same average radiative heat load on tubes, but with slight changes in the radiative profile
- comparable NO_x-levels (on ppm basis)
- This supports a low-cost retrofit rather than an expensive rebuild
- BUT, the results, and particularly the NO_x emissions, are very sensitive to the burner and furnace configuration!
- Further work:
 - Include more geometric details in the computational modeling
 - Measurement campaign to confirm some of the trends in radiation and NO_x

Thank you!

