Hydrogen Production from Biogas by Sorption-Enhanced Steam Methane Reforming (SE-SMR)

Demonstration of the Novel Process at the HyNor Lillestrøm Hydrogen Station

> Julien Meyer, Johann Mastin, Roger Smeets Institute for Energy Technology (IFE) Department of Environmental Technology www.ife.no; julien.meyer@ife.no

Outline

- The HyNor project
- The HyNor hydrogen station at the city of Lillestrøm
- The Sorption-Enhanced Steam Methane Reforming process (SE-SMR) for hydrogen production with integrated CO₂-capture
- The SE-SMR pilot unit planned at the Hynor Lillestrøm station

The HyNor project The hydrogen "highway" in Norway

- Demonstration of hydrogen production technologies for the introduction of hydrogen as transportation fuel in Norway
- Make possible driving between the cities of Oslo and Stavanger with hydrogen vehicles

- Sweden, Danmark and Germany also have similar hydrogen road projects
 - Hydrogen Sweden
 - Hydrogen Link
 - Clean Energy Partnership (CEP)

The HyNor Lillestrøm project

www.hynor.no/romerike http://hynor-lillestrom.no

- Hydrogen production based on renewable energy
 - From landfill gas produced at a nearby landfill and transported by pipe to the station
 - From electrolysis using power from the grid and from photovoltaic panels installed at the station
- Hydrogen compression to 700 bar
 - Conventional mechanical compression
 - Demonstration of a metal hydride compressor delivering at 200 bar
- On-site hydrogen delivery (dispenser)
- Hydrogen vehicles fleet: 4 Think Hydrogen

Project participants and financing

- Hynor Lillestrøm AS: project owner
- Institute for Energy Technology (IFE): project leader
- Akershus Energi AS: building and infrastructure
- Technology suppliers
 - IFE: Reformer unit and system integration
 - HyGear: Landfill gas upgrader and hydrogen purification
 - H2-Logic: Electrolyzer, compression & storage system, dispenser
 - Hystorsys: Metal hydride compressor
 - Scandpower AS: Risk analysis and safety
- Financed by
 - Akershus County (Akershus Fylkeskommune)
 - Research Council of Norway through the Renergi-program
 - Transnova (governmental trial funding program)
 - Innovation Norway

Akershus Energy Park - energy, research, education

http://www.aeas.no/pages/akershus-energipark

The Akershus Energy park

The HyNor building and hydrogen station

HyNor Lillestrøm System Concept

- Production capacity
 - 10 Nm³/h H₂ from the electrolysis line
 - 10 Nm³/h H₂ from the reforming line
 - Purity of 99.99% minimum

The reformer unit

Sorption enhanced steam methane reforming

H₂-production with integrated CO₂-capture in one single step

Reforming
CH_4 (g) + H_2O (g) \rightarrow CO (g) + $3H_2$ (g)
Water gas shift
$\textbf{CO (g) + H}_2\textbf{O (g)} \rightarrow \textbf{CO}_2(\textbf{g}) + \textbf{H}_2(\textbf{g})}$
Carbonation
CaO (s) + CO ₂ (g) \rightarrow CaCO ₃ (s)
Total reaction (SE-SMR)
CaO (s) + CH ₄ (g) + 2H ₂ O (g) \rightarrow CaCO ₃ (s) + 4H ₂ (g)
Calcination (regeneration)

 $CaCO_{3}(s) \rightarrow CaO(s) + CO_{2}(g)$

Sorption enhanced steam methane reforming

Principle and basic concept

Sorption Enhanced Steam Methane Reforming Advantages of the novel H₂-production route

- Higher H₂-yields (95% +) than in conventional SMR, in one single step, and at lower temperature (500-600 C)
- Simplified process layout (fewer vessels)
- No need for shift catalyst
- Reduced needs for downstream H₂-purification
- Potential for lower production costs and energy savings

Reactor technology

- Fluidized bed reactor technology
 - Liquid like behaviour makes
 transport of solids possible
 - Very good heat transfer
- Dual bubbling fluidized bed reactor (DBFB)
 - 2 dedicated reactors connected with loop seals and transport riser
 - Continuous mode
 - Bubbling regime
 - Circulation rate regulated with a slide valve
 - High temperature tube heat exchanger in the regenerator

Simplified SE-SMR process

Experimental results Bubbling bed batch reformer/regenerator

The DBFB SE-SMR pilot

- H₂ production capacity
 - 12.5 Nm³/h
- Reformer
 - 625°C; 0.5-1 barg
 - 0.29 m/s; S/C ratio: 4
 - Upgraded biogas (Swedish standard)
- Regenerator
 - 850°C; 0.5-1 barg
 - 0.10 m/s
 - Steam + 2 vol% hydrogen
- Solids
 - Arctic dolomite from Franzefoss
 - 200µm
 - Commercial reforming catalyst
 - 150µm
 - Ratio sorbent/catalyst: 2.5 3 w/w
 - Solids circulation rate: 75 kg/h
 - Installation in the last quarter of 2011
 - Testing and commissioning in first quarter of 2012

IF2

Other applications of the SE-SMR process Power production and co-production

- H₂-production with CO₂-capture and steam boilers
- H₂-production with CO₂-capture and CC power plant
- H₂-production with CO₂-capture and SOFC
 - ZEG-Power concept

- Co- production of electricity and hydrogen with integrated CO₂- capture
- Electricity from high temperature solid oxide fuel cells (SOFC)
- Hydrogen production by sorption enhanced steam methane reforming
- High total energy efficiency

Thank you for your attention !

