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Dynamic modeling of CO2 absorption systems
Project description

Validation

Simulation studies

Rationale

« The objective of this work task is to implement a dynamic absorber in C02SIM
— The model should be a ‘multipurpose’ packing model

* Focus is placed on competence building through use of simulation models that
can be:

— verified against experimental and plant data where feedback to the work is
done ‘fairly quickly' (validation/verification through established routines)

— by developing dynamic simulation models based on already established
computer architecture (efficient development)

* Toassist in understanding CO, capture processes (or any chemical process), we
believe process simulation is beneficial to all phases in a projects lifetime
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Project description
Validation

We are now moving towards building full scale™ .
plants

« Large and frequent load changes of the power plant requires understanding of dynamic
operation
— How shall the capture plant be operated and controlled?
— What are the real consequences of varying loads at the CO, removal plant?
— How do we handle unsteady behavior, shut down, start up?

Reasons for developing a dynamic simulator
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Development Stratequ: Bt

Simulation studies
Summary

« Task 1: Implement a dynamic column model
— Development of the model for absorption and desorption
— Test model and validate towards pilot plant data (steady state and dynamic)

This work is extensive...
Our first requirement is therefore: We must have a platform for development



Development platform

Project description

CO2SIM programming techniques

* Fundamental problem: Exponential
increase in complexity as code
becomes larger

NETWORK

GENERIC_UNIT

« Requires focus on structural planning
and architectural patterns

— Design patterns can speed up the
development process

— Provides fundamental development
methods related to
* program organization

PROCESS_PROP
- and common data structures (classes)

TEMP = 310 K
PRESSURE = 110kPA

— In other words; the basic code o=
elements at each layer are reusable

— The code design should be gen.eral Such design patterns provide general solutions,
enough to address future requirements documented in a format that does not require

also specific ties to a particular problem



http://en.wikipedia.org/wiki/Documentation
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Example: Use of ‘Design patterns’ does

Simulation studies

generallze code development
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Development platform CO2SIM@SteadyState

Dynamic modeling of CO2 absorption systems

Project description
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PPHS_SplitFlowflashFes

Solver mode: Sequential
Max iterations: 25
lterations performed: 25
Relative tolerance: 0.00011888361361
Specified tolerance:  1E-13
CPU time: 00:02:01
Performance
Type Column
Subtype Absorber
CO2 removed [%)] 78.0837
Inlet loading [mol/mol] NalN
| ||| Outlet loading [molimol] | 04258
=|| | Vapor:
Inlet temperature [K] 311.193
| |Outlet temperature [K] |311.1827
Inlet pressure [kPa] 101
Qutlet pressure [kPa] 101
Inlet CO2 flow [kmol/h] 28354777
Events @ Outlet CO2 flow [kmol/h] |620.5938
>>> Hex : Hex03 <<< - Liquid:
V1 >>> QPFlash : Flash04 <<< Inlet temperature [C] 38
{FOb} Zzz gfzi:s? Mli;;i’zi s Outlet temperature [K] | 318.0231
@ 517 >>> };{ixex ' Mix05 <<< Inlet pressure [kPa] 101
8 >3 ,I_:Flasn .-Cnndenser < Outlst pressure [kPa] 101
exlm- >>> Mixer : Mix0l <<<
P03 >»> Column : Des Col02 <<< Inlet CO2 flow [kmol/h]  12127.0122
18 >>> Column : DES:C’Jl << Outlet CO2 flow [kmol/h] | 14338.0958
>>> QPFlash Reboiler <<<
Reboiler Flash03 <<< Geometry - Length [m] |5
: InterCooler <<< i Geometry - Diameter [m] | 20
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Development Strategy

* | Task 1: Implement a dynamic CO2SIM column model
— Model description and numerical methods
— Test model and validate towards pilot plant data (steady state and dynamic)
» Task 2: Develop the connected unit operations, flash tanks, mixers, storage tanks and
heat exchangers
— Definition of unit operations built into CO2SIM
» Task3: Develop the dynamic Network solver
— Flowsheet model
— Programming techniques: information handling

— Information structure:
« relationship between an event (the cause) and a second event ( the effect) -> causality
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Task 1: The transient column model
* Based on first principle conservation laws
for energy and mass
- Adaptability of the code for different
chemical systems and process
configurations have been emphasized -

Dparational
Themo paciage  ASIR
Miture EA Astarits (J0wt) -

|||||||||||||
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The t]"anSient COlumn model Project description

Transport equations —=
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An extension of the model presented in: Kvamsdal, Jakobsen and Hoff, Chemical Engineering and Processing; Volume 48, Issue 1, January 2009
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The transient column: numerics Projectdescrioion

Simulation studies

Numerical solution to stiff DAE's Summary
- Two point differential algebraic problem e
(DAE) in a single dimension o H‘ i
 Discretization " |
B Tlme normalized |
- Higher order integrator i
— Space |
- Static collocation derivatives - ::f:,}i,?n ‘ E’f,}',i
- Toincrease robustness we need R T T

« Stabilizing methods
1. Normalization

2. Dynamic relaxation (gives initial steadystate
slopes)



Validation

Verification/Validation (Preliminary)
- Experimental validation using pilot plant data
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Experimental validation of dynamic column model =
| Mi » Tested against the "VOCC rig" BLOWR

« Two time series cases (case A and B)

*  30wt%MEA

* Logging of input and output data every 5
seconds

— The cases give about 500 updates
during simulation
« (C02SIM handles all these “events”
automatically during integration to
reflect process changes.

ANOTOAD

d3gyosav

*

li‘
Validation of CO2 Capture - The VOCC-project (2007) ﬁ SINTEF

437000 sV

Absorber: — The events are collected and

Packing height = 5.4m systematically handled from log files
ID=0.5m (excel).



VOCC test case Validation

« (ase B: Stepwise variations in CUg Property logging of inputs (only at events): molfracCO2vap and phase:vap
gas concentration 0.0 ' ' ' '

* Inlet gas concentration of 0.05 1
CO,increased in two single 5 0045 |
step-changes S

. S 0.04f i

- thendecreased in a large £

. 1S
reverse single step-change > o.ss; .
D£-> 0.03 -
0.025 i
v Stable liquid and gas flow over 0.02 1 ' ' L
1000 1500 2000 2500 3000 3500

the experiment. time [s]



Comparing data from VOCC test with simulation

Simulated and measured:

Rich loading

Validation

Property logging of outlets (only at events): loading and phase:lig

042
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Blue line - SIMULATION
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Simulation time increased 30 times

20-30 times faster than real-time -




Comparing data from VOCC test with simulation

Simulated and measured:

Rich loading

Property logging of outlets (only at events): loading and phase:liq
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Validation

Simulated and measured:
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Simulation example

Simulation studies

Property logging of inputs (only at events): flow and phase:vap

* Increasing molar ratio between the 125
gas and liquid flowrate 120
— Varying the liquid and vapor input s
flow rates by ~50%?
 Inatime frame of 50 seconds . 110
— Initially running at steady state = 105
then increase gas flow with 50% £
over a short time interval e 100
— Observe the transients, then run 95
end situation to steady state 90
again
85T
e 20 meter packing, identical inlet 80 500 1000 1500 2000 2500 3000 3500 4000

time [s]

concentrations, only vary flow rate
Y Y Blue: gas flowrate (kmol/h)

Green: liquid flow rate (kmol/h)



Case A: Increasing the flue gas load

Simulation studies

Property logging of outputs (only at events): loading and phase:liq
0.43 ! 1 1 T T T T
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« Varying the molar ratio between
the gas and liquid flow rate

— Inatime frame of ~300 seconds

— Initially running at steady state
then increase/reduce gas flow
with 50%

— Observe the transients, then run
end situation to steady state
again

- 20 meter packing, identical inlet
concentrations, only vary flow rate

Property: flow

Simulation studies

Property logging of inputs (only at events): flow and phase:vap

WA I\ I\
o\ / AR
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200 300 350 400

) time [s]
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Blue: gas flow rate (kmol/h

Green: liquid flow rate (kmol/h)



Case B: Varying the flue gas load

Simulation studies

Property logging of outputs (only at events): loading and phase:liq
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Summary

At this stage in the project a robust codebase is developed for dynamic simulation

— Absorber, desorber packing model (this presentation)
 Verified numerics
- Validated towards plant data (preliminary)

» The event updating procedures facilitates rapid simulation using plant data for validation
e Current model gives acceptable match towards data for MEA
— Both at dynamic and steady state operation

* The implementation methodology allows for efficient simulation of the units’ transient
behavior for continuously changes in input conditions or design parameters, part load
operation, varying input conditions and ramping behavior

[ o
Further work E -

- Afew units implemented: Storage tank, dynamic flash, mixer tank and the
column model

- Network solver to handle sequential dynamic integration T HE
L 2]




Summary
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