Trondheim CCS Conference (TCCS-6)
June 14-16, 2011, Trondheim, Norway

A general column model in CO2SIM for transient modeling of CO_2 absorption processes

Programming methods and code development

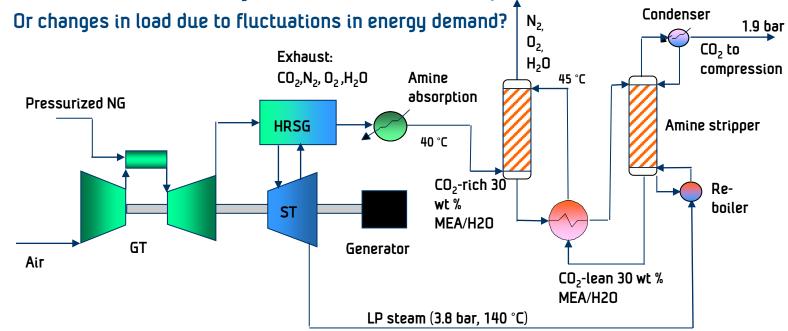
Andrew Tobiesen^a

Magne Hillestadb, Hanne M. Kvamsdala, Actor Chikukwaa

^oSINTEF Materials and Chemistry, Postbox 4760 Sluppen,7494, Trondheim, Norway ^bNorwegian University of Science and Technology, NTNU, Sem Sælandsvei 4, Trondheim, 7491, Norway

Rationale

- The objective of this work task is to implement a dynamic absorber in CO2SIM
 - The model should be a 'multipurpose' packing model
- Focus is placed on competence building through use of simulation models that can be:
 - verified against experimental and plant data where feedback to the work is done 'fairly quickly' (validation/verification through established routines)
 - by developing dynamic simulation models based on already established computer architecture (efficient development)
- To assist in understanding CO_2 capture processes (or any chemical process), we believe process simulation is beneficial to all phases in a projects lifetime


Validation

We are now moving towards building full scale summary

plants

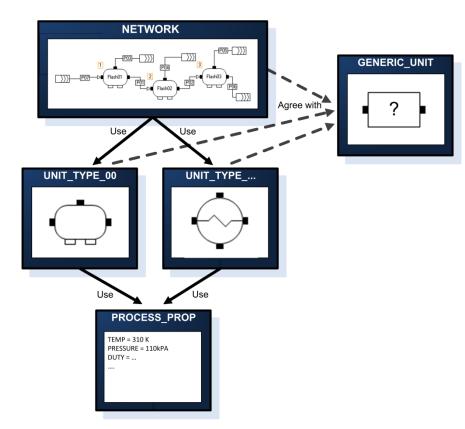
- Large and frequent load changes of the power plant requires understanding of dynamic operation
 - How shall the capture plant be operated and controlled?
 - What are the real consequences of varying loads at the CO_2 removal plant?

— How do we handle unsteady behavior, shut down, start up?

- Simulation studies
 Summary
- Task 1: Implement a dynamic column model
 - Development of the model for absorption and desorption
 - Test model and validate towards pilot plant data (steady state and dynamic)
- Task 2: Develop the connected unit operations, flash tanks, mixers, storage tanks and heat exchangers
 - Definition of unit operations built into CO2SIM
- Task3: Develop the dynamic Network solver
 - Flowsheet model
 - Programming techniques: information handling
 - Information structure
 - relationship between an event (the cause) and a second event (the effect) -> causality

This work is extensive...

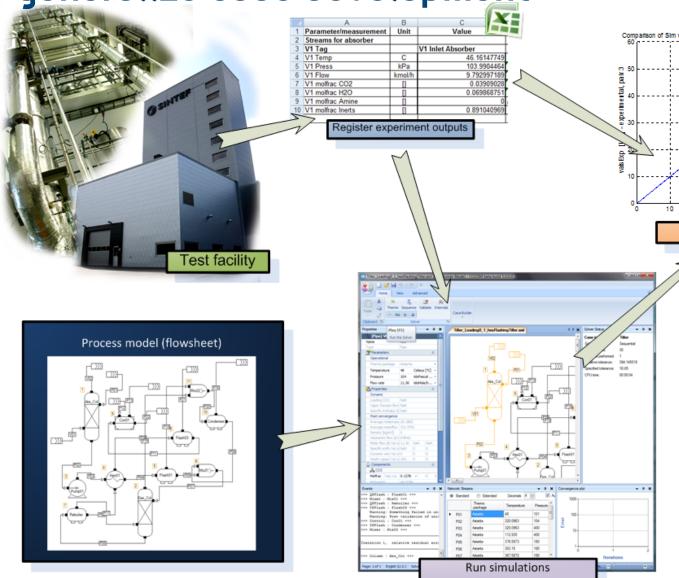
Our first requirement is therefore: We must have a platform for development



Summaru

CO2SIM programming techniques

- Fundamental problem: Exponential increase in complexity as code becomes larger
- Requires focus on structural planning and architectural patterns
 - Design patterns can speed up the development process
 - Provides fundamental development methods related to
 - program organization
 - and common data structures (classes)
 - In other words; the basic code elements at each layer are reusable
 - The code design should be general enough to address future requirements also


Such design patterns provide general solutions, documented in a format that does not require specific ties to a particular problem

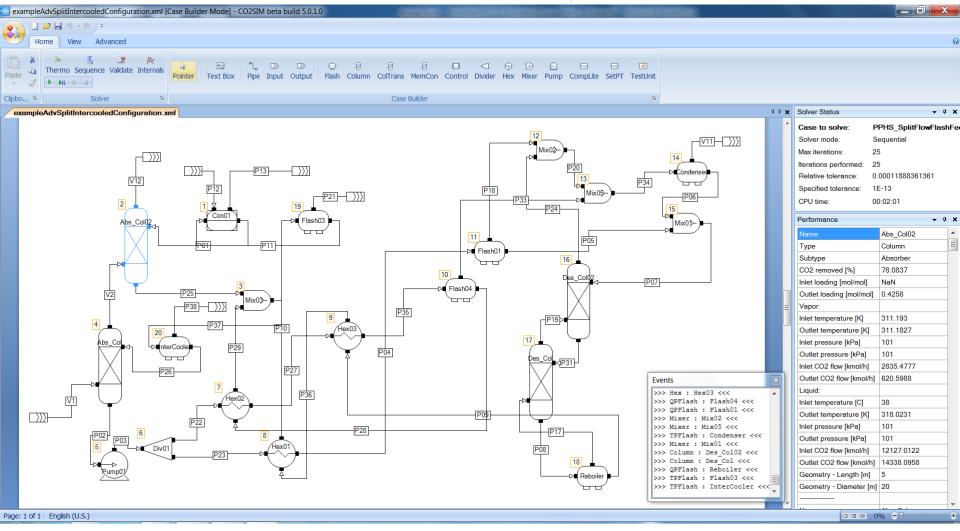
Development platform CO2SIM@SteadyState

Dynamic modeling of CO2 absorption systems

Example: Use of 'Design patterns' does generalize code development

Project description
Validation
Simulation studies
Summaru

Routine that minimizes the need for manually processing data


vakSim [Unit] - simulations, pair 3
Evaluate and compare

- Obtain plant data for the full campaign
- Duplicate plant flow sheet in the simulator
- Simulate the complete campaign (one execution)
- Evaluate statistics for the full campaign
- 5. Further use: optimization etc.

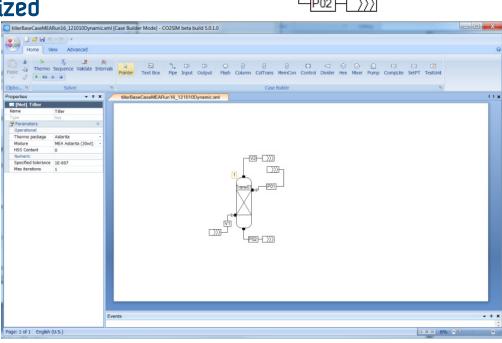
Development platform CO2SIM@SteadyState

Dynamic modeling of CO2 absorption systems

Development Strategy

- Task 1: Implement a dynamic CO2SIM column model
 - Model description and numerical methods
 - Test model and validate towards pilot plant data (steady state and dynamic)
- Task 2: Develop the connected unit operations, flash tanks, mixers, storage tanks and heat exchangers
 - Definition of unit operations built into CO2SIM
- Task3: Develop the dynamic Network solver
 - Flowsheet model
 - Programming techniques: information handling
 - Information structure:
 - relationship between an event (the cause) and a second event (the effect) -> causality

rans0


Validation Simulation studies

Summary

Task 1: The transient column model

 Based on first principle conservation laws for energy and mass

 Adaptability of the code for different chemical systems and process configurations have been emphasized

The transient column model

Transport equations

Gas phase

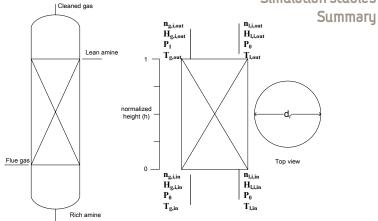
$$\varepsilon_{G}C_{tot,G}\frac{\partial y_{i}}{\partial t} = -n_{tot,G}\frac{1}{L}\frac{\partial y_{i}}{\partial z_{n}} - \left(N_{i}a - y_{i}\sum_{j}N_{j}a\right)$$

$$\frac{\mathrm{d}n_{tot,G}}{\mathrm{d}z} = -\sum_{j} N_{j}a + \frac{\mathrm{d}(\varepsilon_{\mathrm{G}}C_{\mathrm{G}})}{\mathrm{d}t}$$

$$\varepsilon_{G} \frac{\partial T_{G}}{\partial t} = -u_{G} \frac{1}{L} \frac{\partial T_{G}}{\partial z_{n}} - \frac{a}{\sum_{i} (C_{i} C_{n,i})_{G}} \cdot h_{G/L} (T_{L} - T_{G})$$

Liquid phase

$$\varepsilon_{L}C_{L}\frac{\partial x_{i}}{\partial t} = n_{tot,L}\frac{1}{L}\frac{\partial x_{i}}{\partial z_{n}} + \left(N_{i}a - x_{i}\sum_{j}N_{j}a\right)$$


$$\frac{\mathrm{d}n_{tot,L}}{\mathrm{d}z} = -\sum_{j} N_{j}a$$

$$\varepsilon_{l} \frac{dT_{L}}{dt} = -u_{L} \frac{1}{L} \frac{\partial T_{L}}{\partial z_{n}} - \frac{a}{\sum_{i} (C_{i} C_{n,i})_{L}} \left(h_{L/G} (T_{L} - T_{G}) - \sum_{j} \Delta H_{j} N_{j} - H_{\text{wall}} (T_{L} - T_{out}) \right)$$

Dynamic modeling of CO2 absorption systems Project description

Validation

Simulation studies

Bondary conditions

$$y_i(z_{n,0}) = y_{i,\text{feed}}$$
 $x_i(z_{n,1}) = x_{i,\text{feed}}$

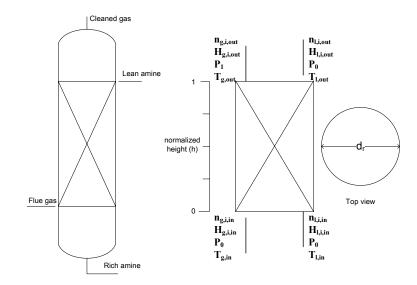
$$n_{tot,G}(z_{n,0}) = n_{tot,G,feed}$$
 $n_{tot,G}(z_{n,1}) = n_{tot,feed}$

$$T_{G}(z_{n,0}) = T_{G,feed} \qquad T_{L}(z_{n,1}) = T_{L,feed}$$

$$C_{\rm G} = P/(RT_{\rm G})$$
 Ideal gas or SRK model $n_{\rm tot} = mol/m^2/s$

 $z_{n} = z / L$ normalized column lenth

An extension of the model presented in: Kvamsdal, Jakobsen and Hoff, Chemical Engineering and Processing., Volume 48, Issue 1, January 2009



Summary

The transient column: numerics

Numerical solution to stiff DAE's

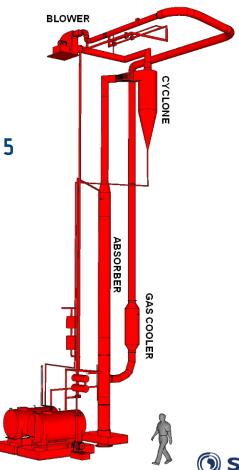
- Two point differential algebraic problem (DAE) in a single dimension
- Discretization
 - Time
 - Higher order integrator
 - Space
 - Static collocation derivatives
- To increase robustness we need
- Stabilizing methods
 - **Normalization**
 - Dynamic relaxation (gives initial steadystate slopes)

Summary

Outline

- Dynamic modeling of CO2 absorption plants
- Project description
 - Simulator requirements/capabilities
 - Short description of simulation model
- Verification/Validation (Preliminary)
 - Experimental validation using pilot plant data
- Simulation studies
 - Ramp behavior
 - Robustness of code
- Summary
- Further work
- Acknowledgements

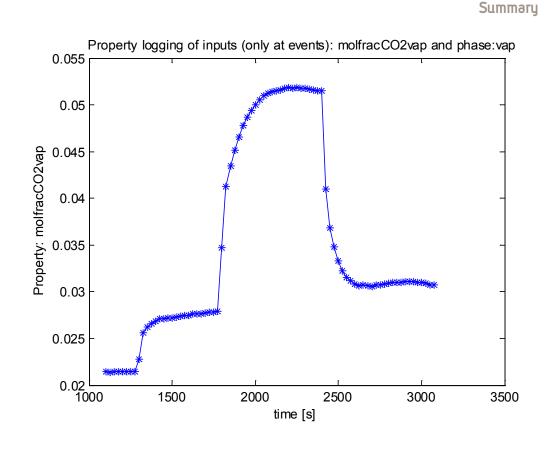
Validation
Simulation studies


Experimental validation of dynamic column model

Absorber: Packing height = 5.4m ID = 0.5m

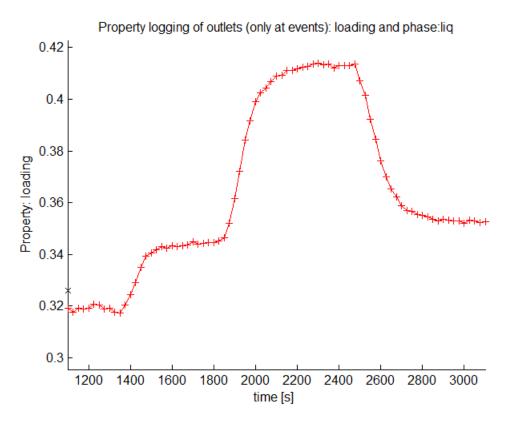
- Tested against the "VOCC rig"
- Two time series cases (case A and B)
- 30wt%MEA
- Logging of input and output data every 5 seconds
 - The cases give about 500 updates during simulation
- CO2SIM handles all these "events" automatically during integration to reflect process changes.
 - The events are collected and systematically handled from log files (excel).

Validation of CO2 Capture - The VOCC-project (2007)



VOCC test case

- Case B: Stepwise variations in CO₂
 qas concentration
 - Inlet gas concentration of CO₂ increased in two single step-changes
 - then decreased in a large reverse single step-change
 - All other process variables kept constant
 - ✓ Stable liquid and gas flow over the experiment.

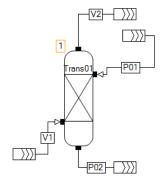

Comparing data from VOCC test with Simulation of CO2 absorption systems with Simulation of CO2 absorption systems of CO2 a

Validation Simulation studies

Summary

Simulated and measured:

Rich loading

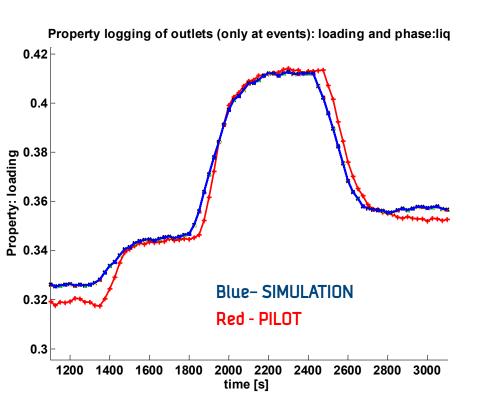


Simulation time increased 30 times

20-30 times faster than real-time

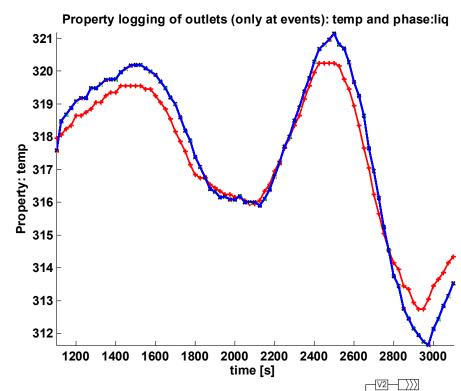
Red line - PILOT data

Blue line - SIMULATION


Comparing data from VOCC test with Simulation of CO2 absorption systems of CO2 absorption system

Validation Simulation studies

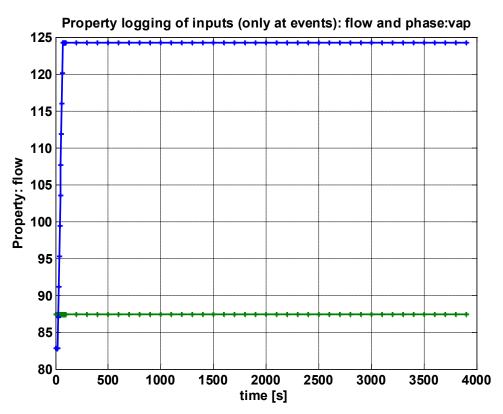
Summary


Simulated and measured:

Rich loading

Simulated and measured:

Outlet Liquid Solvent temperature



Summaru

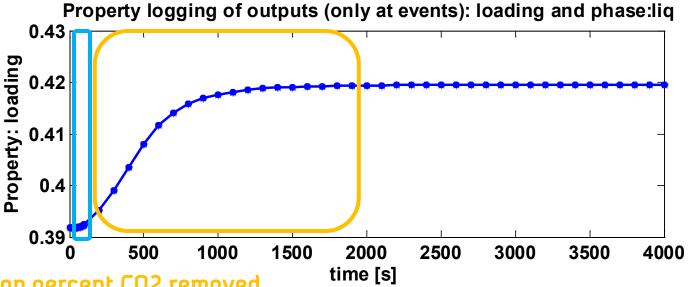
Simulation example

Case A: Increasing gas load

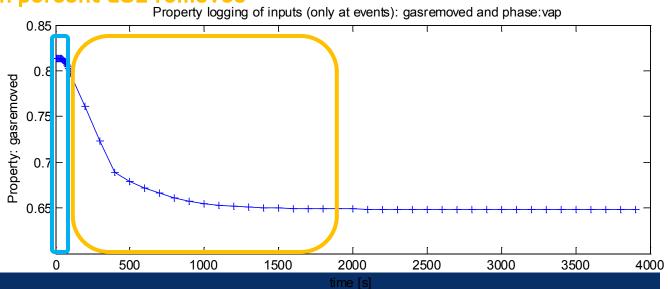
- Increasing molar ratio between the gas and liquid flowrate
 - Varying the liquid and vapor input flow rates by ~50%?
 - In a time frame of 50 seconds
 - Initially running at steady state then increase gas flow with 50% over a short time interval
 - Observe the transients, then run end situation to steady state again
- 20 meter packing, identical inlet concentrations, only vary flow rate

Blue: gas flowrate (kmol/h)

Green: liquid flow rate (kmol/h)

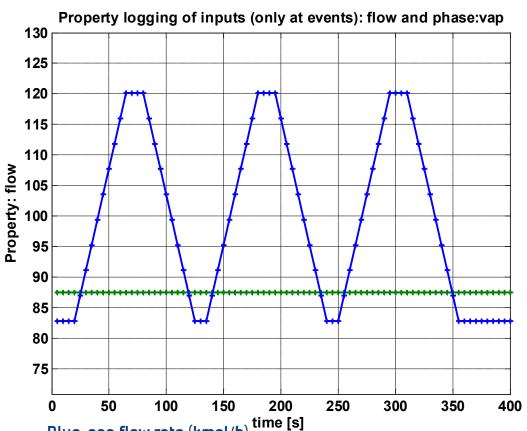

Dynamic modeling of CO2 absorption systems

Project description


Validation

Simulation studies
Summary

Effect on percent CO2 removed

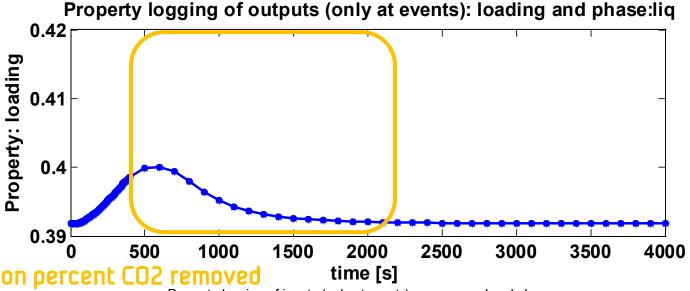


Dynamic modeling of CO2 absorption systems
Project description
Validation
Simulation studies
Summary

- Varying the molar ratio between the gas and liquid flow rate
 - In a time frame of ~300 seconds
 - Initially running at steady state then increase/reduce gas flow with 50%
 - Observe the transients, then run end situation to steady state again
- 20 meter packing, identical inlet concentrations, only vary flow rate

Blue: gas flow rate (kmol/h)

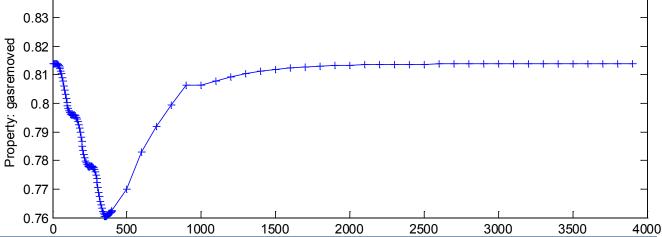
Green: liquid flow rate (kmol/h)


Case B: Varying the flue gas load

Dynamic modeling of CO2 absorption systems Project description

Validation

Simulation studies Summary

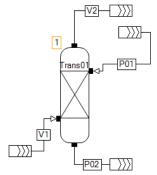

Effect on loading

Effect on percent CO2 removed

0.84

Property logging of inputs (only at events): gasremoved and phase:vap

time [s]



Summary

- At this stage in the project a robust codebase is developed for dynamic simulation
 - Absorber, desorber packing model (this presentation)
 - Verified numerics
 - Validated towards plant data (preliminary)
- The event updating procedures facilitates rapid simulation using plant data for validation
- Current model gives acceptable match towards data for MEA
 - Both at dynamic and steady state operation
- The implementation methodology allows for efficient simulation of the units' transient behavior for continuously changes in input conditions or design parameters, part load operation, varying input conditions and ramping behavior

Further work

- A few units implemented: Storage tank, dynamic flash, mixer tank and the column model
- Network solver to handle sequential dynamic integration

Dynamic modeling of CO2 absorption systems
Project description
Validation
Simulation studies
Summary

Acknowledgement

This presentation forms a part of the BIGCO2 project, performed under the strategic Norwegian research program Climit. The authors acknowledge the partners: StatoilHydro, GE Global Research, Statkraft, Aker Clean Carbon, Shell, TOTAL, ConocoPhillips, ALSTOM, the Research Council of Norway (178004/I30 and 176059/I30) and Gassnova (182070) for their support.

