

Heat of absorption of CO₂ in aqueous ammonia, piperazine solutions and their mixtures

Jinzhao Liu, Shujuan Wang, Hallvard F Svendsen*, Muhammad

Usman Idrees, Inna Kim and Changhe Chen

The 6th Trondheim Conference on CO₂ Capture, Transport and Storage

Trondheim, June 14-16, 2011

Introduction – Experimental apparatus and methods –Results and discussion –Conclusions

Tsinghua University

- Outline
- Introduction
- Experimental apparatus and methods
- Results and discussion
- Conclusions

Introduction

Back ground

 \checkmark CO₂ Capture \rightarrow Chemical absorption

• Research area

✓ Heat of absorption ΔH_{abs}

- Absorbent
 - ✓ Aqueous ammonia (Qin F., 2010)
 - ✓ Piperazine solution
 - ✓ NH₃/PZ blended solution

✓ Tsinghua University

清莱大学

Innovation and Creativity

(Hilliard M., 2008; Kim I., 2009)

Chemical reactions of CO_2 with NH_3 (aq)

The reaction of CO_2 with NH_3 (aq) is deeply discussed by Kohl et al (1997) and Yeh et al (2005). The total reaction can be described as the equation (1):

 $CO_2 + NH_3 + H_2O \rightleftharpoons NH_4HCO_3$ $\triangle H_{rx} = 64.26 \text{ kJ/mol} (1)$

The actual process of the reaction can be described as step-by-step reactions. First of all, reaction (2) occurs as:

Chemical reactions of CO₂ with PZ solution

Heat of reaction of CO_2 with PZ solution was determined mainly by the following two reversible reactions (Bishnoi and Rochelle, 2000; Ermatchkov et al., 2002; Derks and Versteeg, 2006).

First of all, at the beginning of the absorption process, reaction (6) mainly determined the $\triangle H_{abs}$:

$$PZ + H_2O + CO_2 \rightleftharpoons PZCOO^- + H_3O^+ \tag{6}$$

As the absorption process going on, the CO_2 loading of solution increased, free PZ decreased, and the generation of $PZCOO^-$ made reaction (7) gradually began to occur.

 ΔH_{abs} estimated by VLE data

Tsinghua University

Experimental apparatus in this work

• The experimental setup of the 2L reaction calorimeter CPA-122 (ChemiSens AB, Lund, Sweden)

Experimental methods

Experimental section

- NH_3 (aq)
- $\checkmark \qquad \text{Concentration:} \quad 3.1 \text{ m (5 wt\%)}$
- ✓ Temperature: 40°C, 60°C, 80°C

PZ solution

- ✓ Concentration: 0.86 m (6.9 wt%)
- ✓ Temperature: 40°C, 60°C, 80°C
- NH₃/PZ blended solution
- ✓ Concentration:

3.1m NH₃+0.86m PZ; 3.1m NH₃+0.43m PZ; 1.5m NH₃+0.86m PZ

Temperature: 40°℃, 60°℃, 80°℃

Chemicals

- CO_2 (AGA, \geq 99.99% pure)
- Distilled water (NTNU Lab)
- Piperazine (SIGMA-ALDRICH, > 99 % pure)
- Ammonia (SIGMA-ALDRICH, \geq 25wt%)
- All the concentrations of tested solutions were determined by Metrohm 809 Titrando auto titrator.

Fig.6. Heat of absorption of CO_2 with NH₃ (aq) at 80 °C

Fig.7. Heat of absorption of CO_2 with 5wt% NH₃ (aq) at 40, 60 and 80 $^\circ$ C

WW

Fig.10. Heat of absorption of CO_2 with PZ solution at 80 °C

Fig.11. Heat of absorption of CO₂ with 0.86m PZ solution at 40, 60 and 80 $^{\circ}$ C

Heat of absorption of CO₂ in 3.1m NH₃/0.86m PZ blended solutons

ふう

Effect of PZ concentration to the heat of absorption

Comparison of NH₃/PZ blends with MEA/PZ blends at 40°C

NH₃/PZ blended solutions compared with other mixtures

measured by this work compared with other mixtures at 40°C

Fig.22. Heat of absorption of CO₂ with NH₃/PZ blended solutions Fig.23. Heat of absorption of CO₂ with NH₃/PZ blended solutions measured by this work compared with other mixtures at 80°C

Innovation and Creativity

Conclusions

- A reaction calorimeter CPA-122 was used to determine the heats of absorption (ΔH_{abs}) of CO₂ in NH₃ (aq), PZ solutions and their mixtures at 40, 60 and 80°C. The trends of ΔH_{abs} changing with CO₂ loading α were obtained at each temperature.
- ΔH_{abs} of CO₂ in 5 wt% NH₃ (aq) at low CO₂ loading interval (0-0.5) was estimated to be 74.8 kJ/mol CO₂ at 40°C and 65.9 kJ/mol CO₂ at 80°C.
- ΔH_{abs} of CO₂ in 0.86m PZ solution were estimated to be 72-74 kJ/mol CO₂ at low CO₂ loading interval (0-0.5) at 40-80°C.
- △ H_{abs} of CO₂ in NH₃/PZ blended solutions were measured and found to demonstrate a high degree of consistency with only NH₃ (aq)'s results during entire CO₂ loading interval at each temperature.
- The mechanism of the heat of absorption controlled by the reactions of CO₂ with NH₃ and PZ in the mixtures was also discussed.

Introduction – Experimental apparatus and methods – Results and discussion – Conclusions

Tsinghua University

Thank you for your attention!

Questions?

