The

June 6th 2011

Process concepts for combined CO2 and SO2 removal

innovation

CSIRO: Erik Meuleman, Paul Feron

EnBW: Denise Lübbren, Sven Unterberger

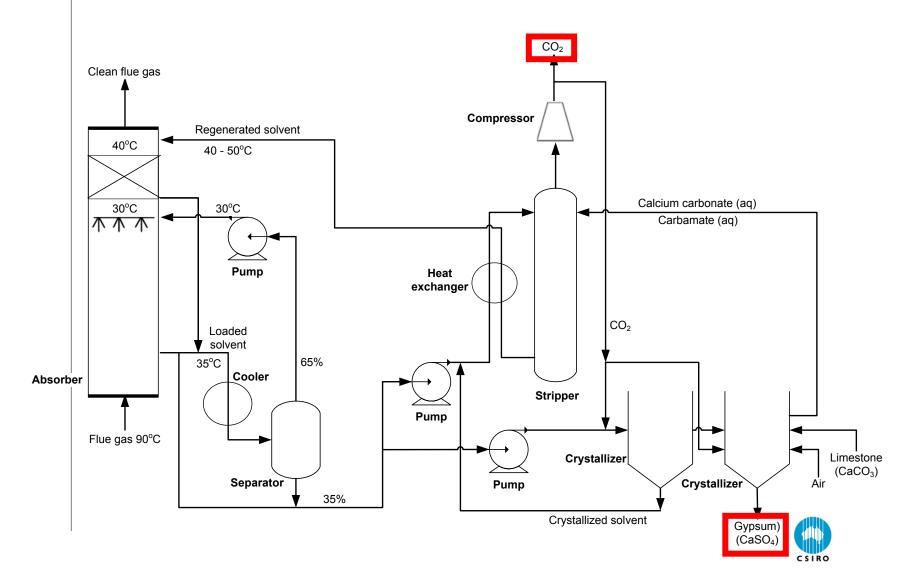
TNO: Christina Sanchez Sanchez, Patricia van den Bos, Mark Roelands, Monique Oldenburg, Earl Goetheer

Aim:

Traditional powerplant with CCS versus co2/so2 integrated system

pictures illustrating this will be made

Process Design routes


- > DECASOX
- > DOUBLE LOOPED CAPTURE PROCESS
- Modified DECASOX

TNO innovation for life

DECASOx Conceptual Process Design

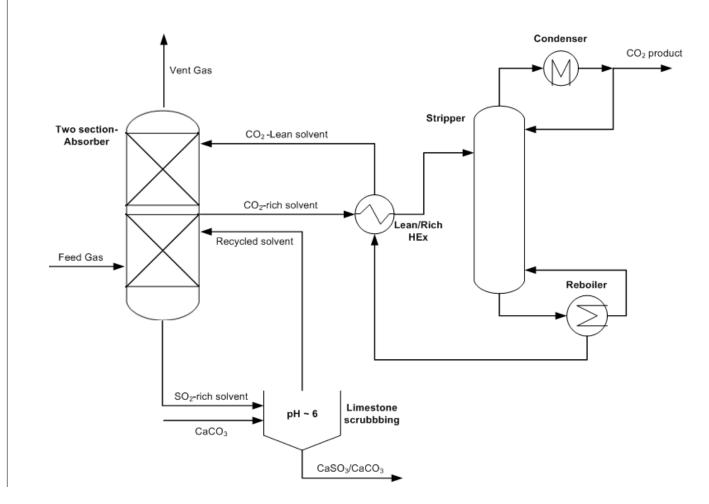
Experimental results of $CaCO_3$ recrystallization to $CaSO_3/CaSO_4$ by applying pressurized CO_2

exp.	Potassium	K ₂ SO ₄	K ₂ SO ₃	CaCO ₃	CO ₂	Final	Reaction	CaCO ₃
	taurate				pressure	рН	time	converted (%)
	(kmol.m ⁻³)	(kmol.m ⁻³)	(kmol.m ⁻³)	(kmol.m ⁻³)	(bar)		(hh:mm)	
А	0.10	0.35	0.35	0.25	7.15	6.27	2:22	22.56%
В	0.03	0.13	0.13	0.25	7.20	6.37	2:29	3.14%
С	0.03	0.13	0.12	0.25	38.86	5.88	18:19	30.83%

Feasible CaCO₃ recrystallization to CaSO₃/CaSO₄ by CO₂ pressure, but CaCO₃ conversion not very high due to:

- At pH ~6, most sulphite converted to bisulphite → calcium bisulphite soluble compound has higher solubility than sulphite.
- > CaCO₃ extremely low solubility.

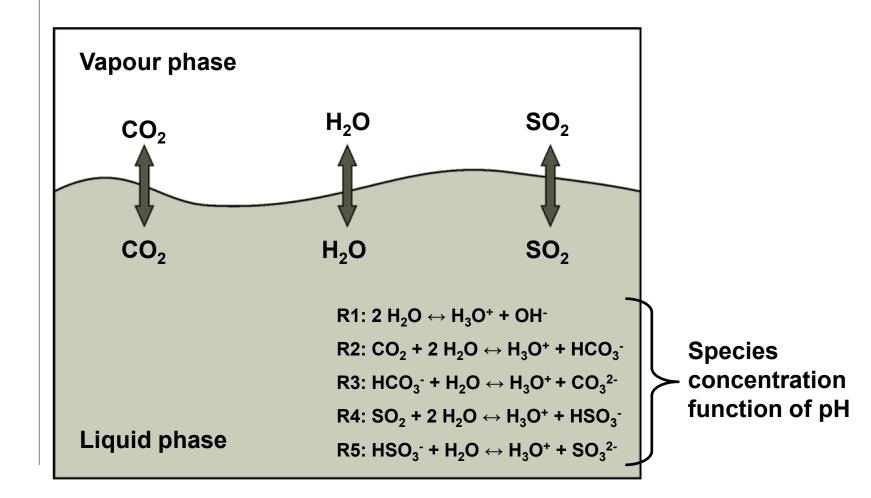
Conclusion: DECASOx is complex and has a high operational cost



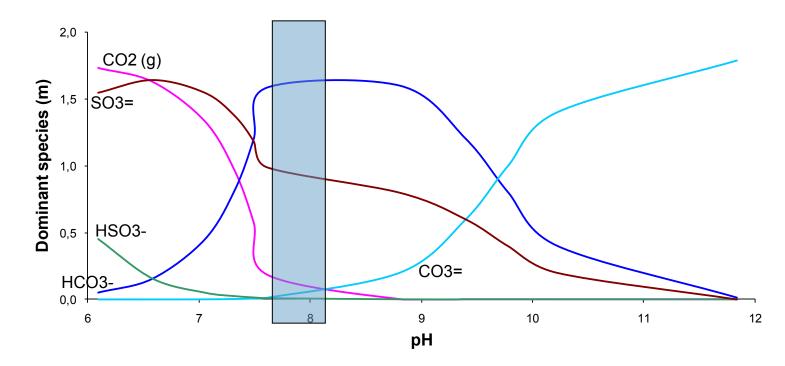
5 June 6th 2011

TNO innovation for life

Double Looped Capture Process



Thermodynamics $K_2CO_3 - SO_2 - CO_2$ System



innovation

Sulfite-Carbonate Equilibrium

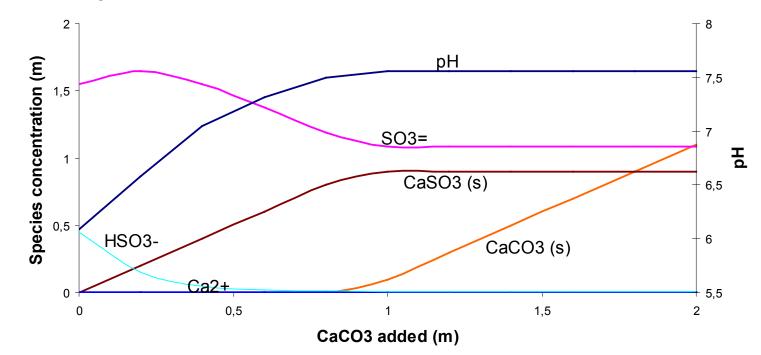
- At pH ~ 8 recycled solvent enters absorber → CO₂ mostly found in bicarbonate (HCO₃⁻) form.
- > pH < 6 is required for limestone (CaCO₃) scrubbing.

Limestone scrubbing

- Limestone Dissolution: CaCO₃ + H⁺ ↔ Ca²⁺ + HCO₃⁻
- Reaction with Dissolved SO₂: $Ca^{2+} + HSO_3^{-} \leftrightarrow CaSO_3 + H^+$ $Ca^{2+} + SO_3^{2-} \leftrightarrow CaSO_3 (↓)$

> **Precipitation** of solid species governed primarily by solubility:

Salt	Solubility product (M ²)
CaSO ₃ •½H ₂ O	2.76 x 10 ⁻⁷ (40°C)
CaSO ₄ •2H ₂ O	1.20 x 10 ⁻⁶ (40°C)
CaCO ₃	0.87 x 10 ⁻⁸ (25°C)


Source: Kohl, Nielsen, Gas Purification, 1997.

CaCO₃ addition

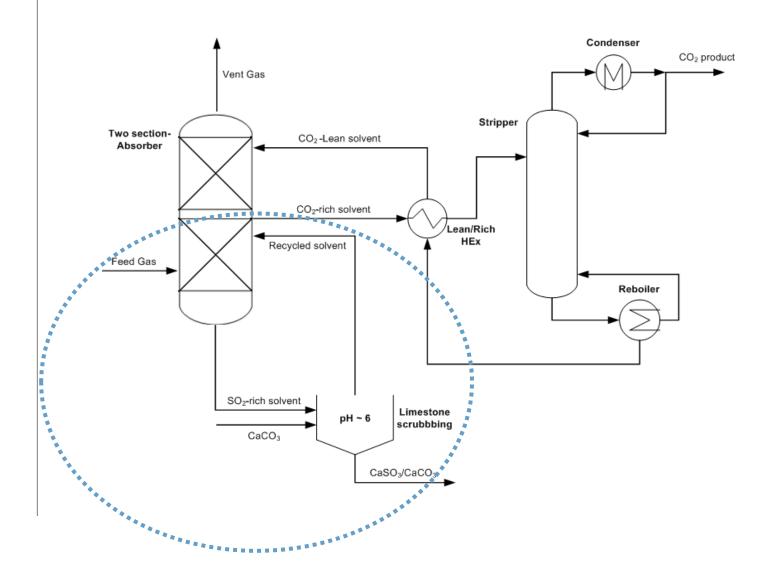
- CaCO₃ starts precipitating above pH ~ 7.5.
- > Sulfur found in solution in **sulfite** (SO_3^{2-}) form.
- Almost no Ca²⁺ remains in solution → no CaCO₃ precipitation expected in the absorber.

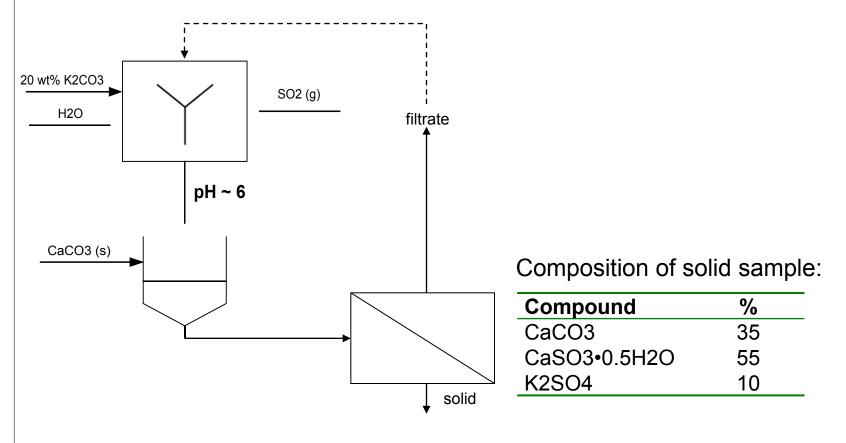
Expected Recycled Solvent Composition

				-			
	CaCO ₃ added (m)	рН	HCO ₃ - (m)	CO ₃ ²⁻ (m)	SO ₃ ²⁻ (m)	HSO ₃ - (m)	Ca ²⁺ (m)
	0	6.09	0.05	1.3 x 10 ⁻⁵	1.55	0.45	0
	0.2	6.58	0.15	1.2 x 10 ⁻⁵	1.65	0.15	3.2 x 10 ⁻⁵
	0.4	7.05	0.45	0.001	1.55	0.05	3.4 x 10 ⁻⁵
	0.6	7.32	0.82	0.004	1.38	0.02	3.7 x 10 ⁻⁵
	0.8	7.50	1.20	0.007	1.19	0.01	4.1 x 10 ⁻⁵
CaCO ₃	$\int 1$	7.56	1.40	0.01	1.09	0.01	4.4 x 10 ⁻⁵
precipitatio	n _{1.2}	7.56	1.40	0.01	1.09	0.01	4.4 x 10 ⁻⁵
	* 1.8 m K ₂ CO ₃	; 2 m SO ₂ @)25 C,1 atm				Ţ
						lo	w Ca²+

low Ca²⁺ concentration in recycled solvent

innovation for life

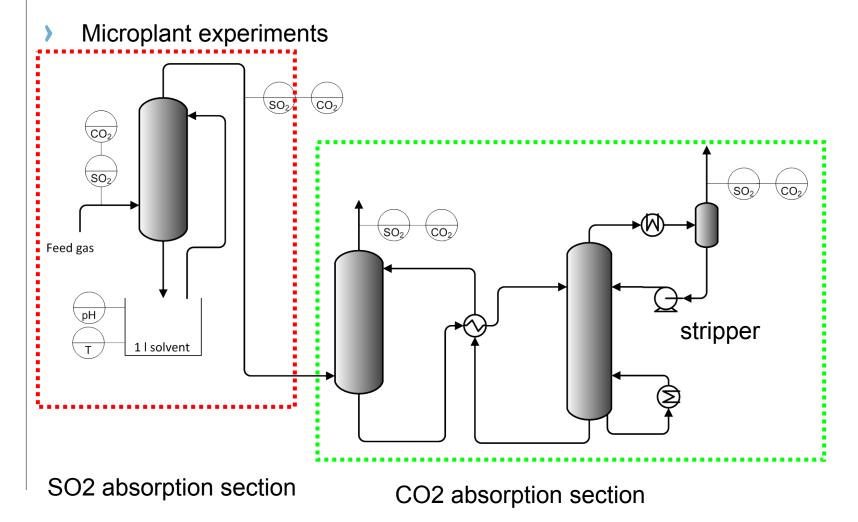

 \bullet


Proof of principle

Proof of Principle K₂CO₃-SO₂ System

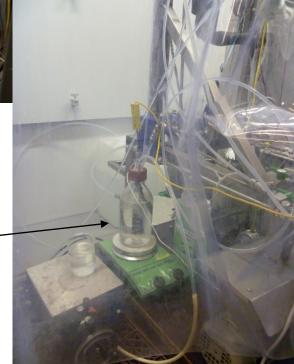
Yield on Sulfur is around 70%

Strong indications that high recovery of sulfurous components is possible


innovation for life

innovation for life

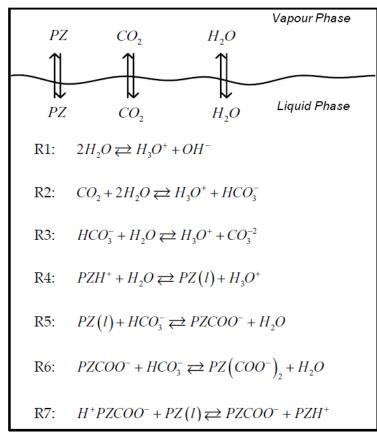
Proof of concept (Continuous processing)

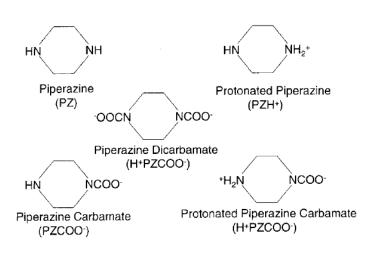


SO2 scrubbing liquid

SO2 absorber

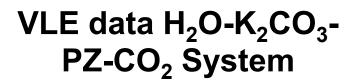
TNO innovation for life


CO2 absorber



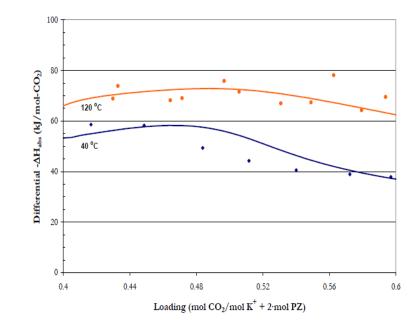
Thermodynamics H₂O-K₂CO₃-PZ-CO₂ System

Source: Hilliard M., Thermodynamics of Aqueous Piperazine/Potassium Carbonate/Carbon Dioxide Characterized by the Electrolyte NRTL Model within Aspen Plus, 2005.



innovation for life

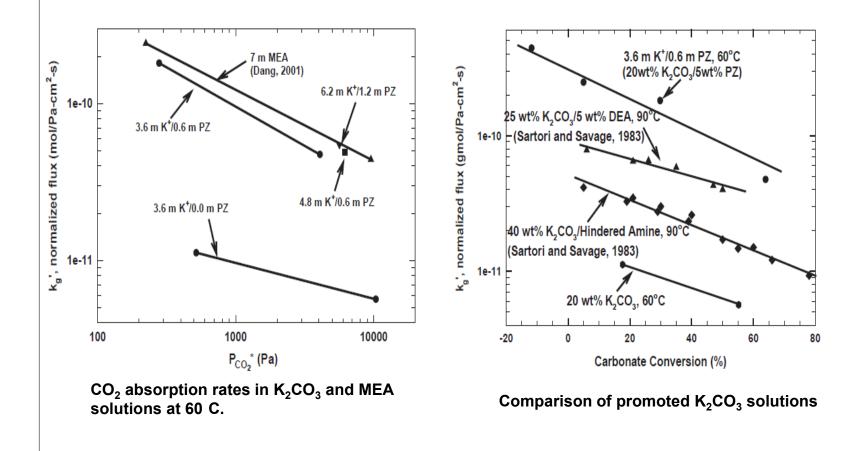
Molecular structures of piperazine species



Enthalpy of CO₂ Absorption

for life

20 – 120°C. Points: 40°C, 60°C, 80°C 100°C, 120°C. Lines: elecNRTL Model Predictions.


Comparison of the Enthalpy of CO_2 Absorption in 6 m K⁺ + 1.2 m PZ at 40 and 120°C from Kim (2007) to Predictions from this work.

> innovation for life

CO₂ absorption rates in different solvents

Source: Cullinane J.T., Rochelle G.T., Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine, 2004

> innovation for life

Comparison to MEA process: Conditions

> Boundary conditions for MEA and $K_2CO_3/PZ CO_2$ -capture process comparison

	Abu-Zahra et al. MEA MEA 30 wt% ^a	This work K_2CO_3/PZ K_2CO_3/PZ 22.1/13.8 wt% ^a
CO ₂ -capture rate (%)	90	90
CO ₂ -outlet pressure (bar)	110	110
Desorber pressure (bar)	2.1	3
Absorber pressure (bar)	1.1	1.1
Flue gas mass flow (kg/s)	616	577
Flue gas temperature (°C)	48	47
Flue gas CO ₂ concentration (vol% (wet)) 13.3	14.2
Lean solvent temperature (°C)	30	40
Specific solvent flow $(m^3/t CO_2)$	27.8	74.4
Specific cooling water flow $(m^3/t CO_2)$	103	82.1
Lean loading (mol CO ₂ /mol solvent)	0.32	1.013
Rich loading (mol CO ₂ /mol solvent)	0.49	1.101

^a Solvent.

Source: Oexmann J., Hensel C., Kather A., Post-combustion CO2-capture from coal-fired power plants: Preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate, 2008.

TNO innovation for life

Comparison to MEA process: Results

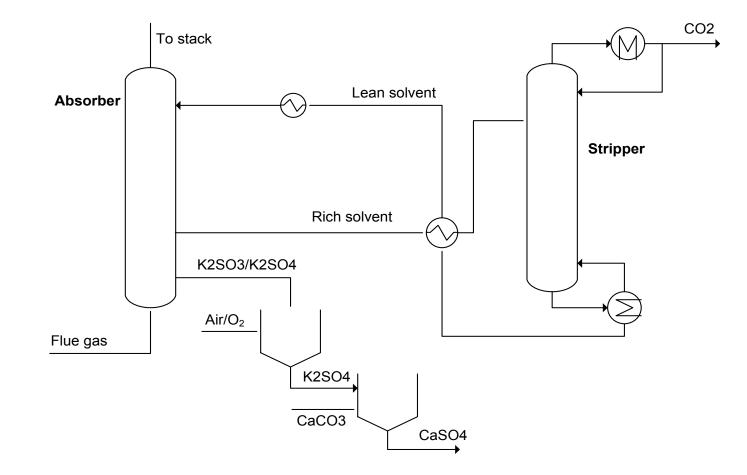
> Results for MEA and $K_2CO_3/PZ CO_2$ -capture process comparison

	Abu-Zahra et al. MEA	This work K ₂ CO ₃ /PZ
CO2 captured (kg/s)	112.5	110.4
Specific reboiler heat duty (GJ/t CO ₂)	3.29	2.44
Specific power loss (kWh/kg CO ₂)	0.342	0.288
Power loss for solvent regeneration	0.230	0.170
Power demand capture	0.033	0.047
Power demand compression	0.079	0.071
Power plant net efficiency (% LHV)	34.6	36.4
Efficiency decrease (%pts.)	11.3	9.5
Number of absorbers	2	3
Absorber height (m)	29 ^a	12.0
Absorber diameter (m)	11 ^a	12.7
Number of desorbers	1	2
Desorber height (m)	15 ^a	6.9
Desorber diameter (m)	10 ^a	11.3
Column investment costs (M€ 2007)	10.9	8.84
Specific column investment costs (€/(t CO ₂ /h))	352	288.3
^a Estimated.		

Source: Oexmann J., Hensel C., Kather A., Post-combustion CO2-capture from coal-fired power plants: Preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate, 2008.

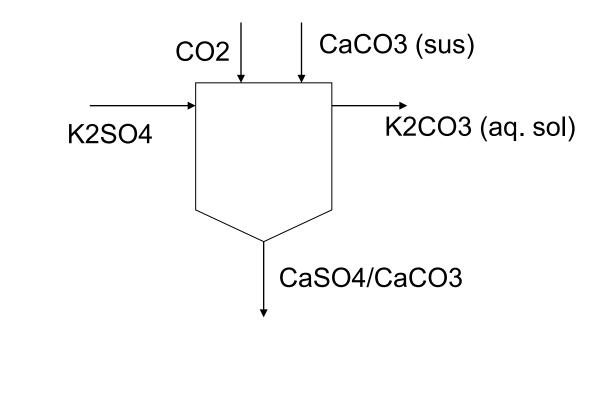
Double looped process - Preliminary conclusions

- > Proof of Principle delivered
- > Proof of concept in progress

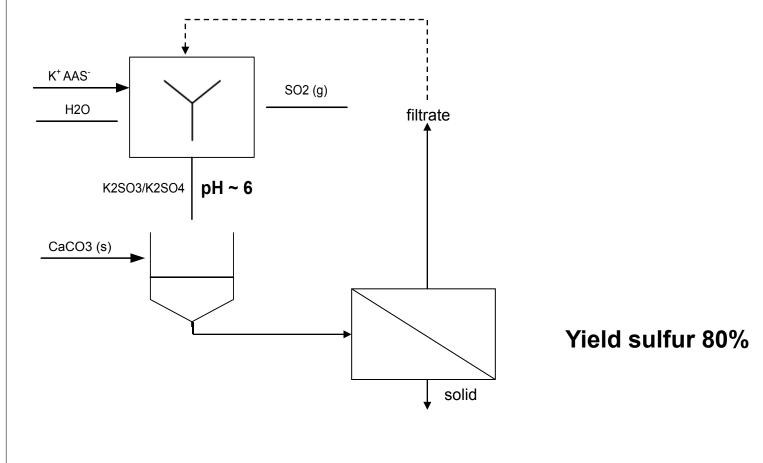

However, operational benefits can be debated

o innovation for life

Modified DECASOx Conceptual Process Design



Modified DECASOx



innovation for life

Proof of Principle of Modified DECASOx concept

First route scouting modified DECASOx shows promising results

innovation

- > Promising route, warrants further investigations
- Endproduct sulfur containing species (K2SO4 or CaSO4) dependent on the market needs
- > Economics should be further investigated

Acknowledgement

