

Development of a precipitating carbonate technology for postcombustion CO_2 capture.

Lodi Schoon Jiri van Straelen

TCCS-6

Trondheim

June 16, 2011

Overview

- Minimum energy consumption for solventbased post-combustion CO₂ capture.
- Introduction Shell precipitating carbonate technology
- Pilot plant operation precipitating carbonate process
- Conclusions and outlook technology development

Fig 1. Precipitating carbonate pilot plant at STCA.

Minimum water vaporization at the top of the stripper (Habs = 30 kj/mol)

- For a post-combustion CO_2 capture process, the minimum ratio of H_2O to CO_2 at the top of the stripper can be determined:
 - P_{CO2}, P_{H2O} and temperature of the loaded solvent at the bottom of the absorber are known.
 - The T-P behavior of water is known (steam table)
 - The T-P behavior for CO₂ can be determined as a function of reaction heat of CO₂:

Eq 1. (Gibbs-Helmholtz)
$$\ln(pCO_{2,T2}) = \ln pCO_{2,T1} - \frac{H_{abs,CO_2}}{R} \cdot \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

Minimum water vaporization at the top of the stripper (Habs = 80 kj/mol)

The same analysis can be done for a solvent with a heat of absorption of 80 kj/mol, such as MEA.

Stripper top: Min H ₂ O:CO ₂ ratio	
Habs CO ₂	= 80 kj/mol
T (@P _{tot} 1 bar)	= 80 °C
P water	= 360 mbar
PCO ₂	= 640 mbar
Ratio CO ₂ :H ₂ O	= 1.7

Conclusion:

High reaction heat, but for every mole of CO_2 you will need to condense minimum only 0.6 moles of water.

Fig 5. Vapour pressure CO₂ and H₂O vs T

Minimum energy consumption for CO₂ capture

- Using this analysis, the minimum energy consumption for a post-combustion capture line-up can be determined.
 - Assumption of a cyclic loading of 8 wt% with a lean-rich heat-exchanger T-approach of 5 °C

Fig 5. Minimum energy consumption stripper as a function of Habs

Minimum water vaporization at the top of the stripper (precipitating process, 30 kj/mol)

- For a process where a CO_2 species precipitates by cooling and consecutively is concentrated, the minimum ratio can also be described:
 - Point A to B: The fat solvent is cooled; a CO₂ species precipitates. The CO₂ loading of the formed slurry is increased by concentrating the slurry in a settler.
 - **Point B to C:** The concentrated slurry is heated. The solids dissolve and the loading of the liquid phase increases.
 - Point C to D: A clear liquid is heated further to the bubble point at 1 bar.

Fig 6. Line-up for a precipitating process with solids concentration.

Stripper top: Min H ₂ O:CO ₂ ratio	
Habs CO ₂	= 30 kj/mol
T (@P _{tot} 1 bar)	= 75 °C
P water	= 280 mbar
P CO2	= 730 mbar
Ratio CO ₂ : H ₂ O	= 2.6

Conclusion:

In a precipitating process, it may be feasible to have low water losses and a low heat of reaction. The heat required to dissolve the solids is not included in this evaluation.

6

Fig 7. CO₂ to H₂O ratio in a line-up with precipitation and concentration of the solids.

Introduction Shell precipitating carbonate technology

Fig 8. Conceptual PFS Shell precipitating carbonate technology.

Chemistry

- **1.** $CO_2(aq) + H_2O + CO_3^2 \rightarrow 2 HCO_3^-$
- **2.** $K^+ + HCO_3^- \rightarrow KHCO_3 (\downarrow, S)$

An accelerator is used to enhance mass transfer of CO_2 to liquid phase

Drivers technology development.

- 1. Potential for low energy consumption (Lower end of **2.5 4** MJ /kg range)
- 2. Options for heat integration to dissolve solids may bring down energy consumption further.
- 3. When a non-volatile accelerator is used, a water wash may not be required and there will be no amine emissions to air.

Development overview

- Phase I. Determination of feasibility of process concept
 - Concept development
 - Basic data measurement
 - Semi-batch absorption in bubble column

Phase II. Design and construction of pilot plant

- Crystallization studies
- Detailed design and construction pilot plant.
- Start-up pilot plant

Phase III. Operation pilot plant, other investigations

- Operation of pilot plant.
- Laboratory screening of alternative accelerators
- Development of electrolyte model (including precipitation) for target system
- Laboratory screening of crystallisation behavior.
- Techno-economic evaluation of full scale unit.

Fig 9. Product semi-batch crystallisation in a bubbled vessels.

Fig 10. SEM photograph of crystals formed in a lab set-up.

Shell pilot plant precipitating carbonate technology

Fig 11. PFS of precipitating carbonate pilot plant at STCA

- Pilot plant operated at Shell Technology Center Amsterdam.
- Start-up Q4, 2010.
- Capacity of pilot plant max 25 kg/d CO₂.
- Dimensions 10m x 1.5m x 6m
 (H x L x W)
 - Absorber 5 cm diameter. Total 4m Sulzer Mellapak 500y packing.
 - Stripper 3 cm diameter. 3.2m Sulzer DX packing.
 - Crystalliser 20 I

Conclusions and outlook

Conclusions

- The continous operation of a precipitating carbonate process for post-combustion CO₂ capture, in the presence of an amine accellerator, has been demonstrated.
- Pilot plant operation and detailed modeling confirms energy consumption in the lower end of the 2.5 -4 MJ/kg range. The heat of dissolution of KHCO₃ (s) forms a significant part of the total energy consumption (~ 1 MJ / kg CO₂).
- Opportunities have been identified to bring down energy consumption further by applying heat integration to dissolve the KHCO₃ crystals.
- Due to the solids concentration step, the fat solvent loading and energy consumption for the process is hardly dependent on pCO₂ in the feed gas in the range 4 – 15% CO₂.
- Robust operation of a precipitating process with solids handling requires very close attention, both during design and during operation.

Outlook

- Operation of pilot plant using alternative accellerators.
- Detailed OPEX and CAPEX review based on pilot plant results, crystallisation studies and process modeling.
- Preparations for an industrial pilot plant.

