N₂O solubility at high amine concentration and validation of N₂O Analogy

Ardi Hartono, <u>Emmanuel, O. Mba</u> and Hallvard F. Svendsen
The 6th Trondheim CO₂ Capture, Transport and Storage Conference
Trondheim, Norway, June 14-16, 2011

Outline

- Introduction
- Drawbacks and Aims
- Experimental Section
 - Chemicals Used
 - Solubility Apparatus
- Results and Discussion
 - N₂O Analogy with H₂O
 - N₂O Analogy with Neutralized Amine system
- Conclusion and Future works

Introduction

- Physical CO₂ solubility is important for detailed thermodynamic modeling and design
- Expressed as the Henry's law Constant
- □ Can not measure directly in Amine solution
- But can be inferred from the N₂O solubility via N₂O analogy

$$H_{CO_2}^{Am} = H_{N_2O}^{Am} \cdot \left(\frac{H_{CO_2}^{H_2O}}{H_{N_2O}^{H_2O}} \right)$$

□ N₂O Analogy (Versteeg & van Swaiij, 1988)

$$\frac{H_{N_2O}^{H_2O}}{H_{CO_2}^{H_2O}} = 3.04 \cdot \exp\left(\frac{-240}{T}\right)$$

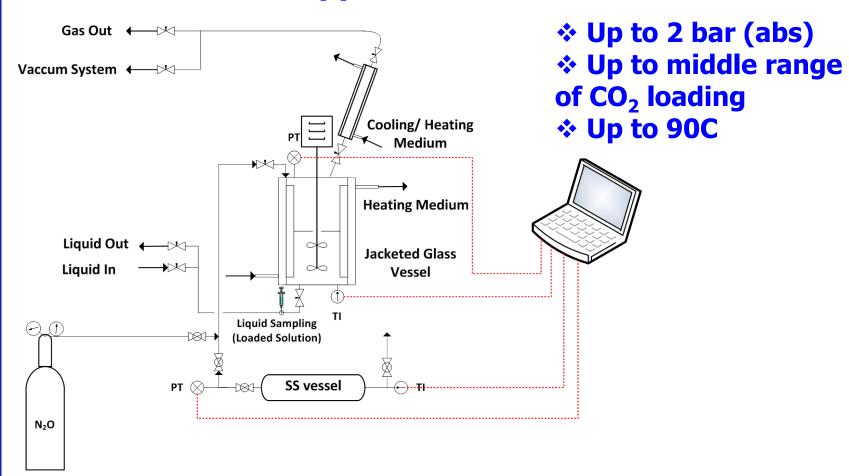
Drawbacks:

N₂O Analogy was challenged:

- Not valid over large range of concentrations (Pawlak and Zarzycki, 2002)
- □ Valid for amine concentration less than 30 wt% (Hutenhius, et al. ,2008)

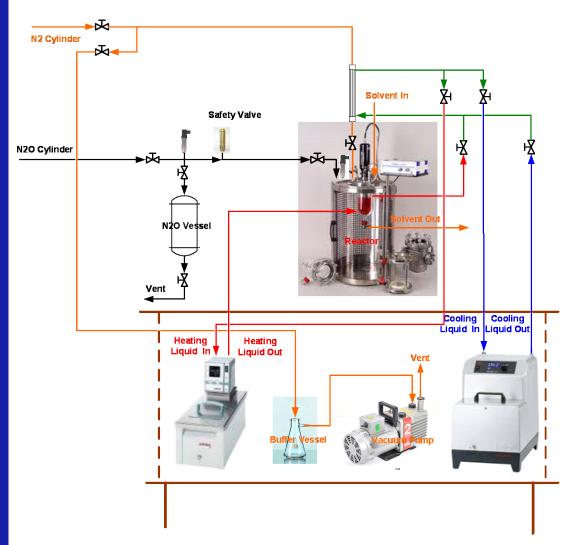
Aims:

to measure the N₂O solubility at high amine concentrations and to test the N₂O analogy


Experimental Section

Chemicals used

- \square CO₂ gas (purity \ge 99.999 mol %, from YARA-PRAXAIR)
- \square N₂O gas (purity \ge 99.99 mol %, from YARA-PRAXAIR)
- \square N₂ gas (purity \ge 99.6 mol %, from YARA-PRAXAIR)
- ☐ H₂SO₄ (purity 95-97% from SIGMA-ALDRICH)
- □ MDEA (purity \ge 99mass%, from SIGMA-ALDRICH)
- ☐ De-ionised water was used as solvent throughout the experiment


Apparatus used

1. Low Pressure Apparatus

Hartono, et al. (2008)

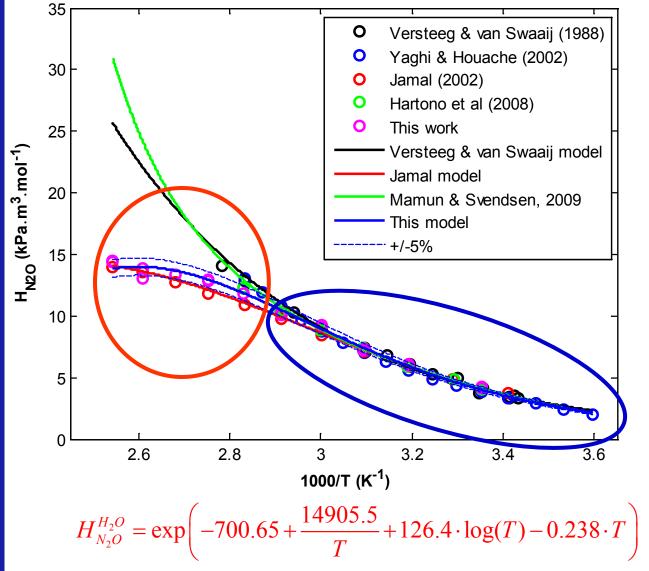
2. Moderate/High Pressure Apparatus

- Up to 6 bar
- ***** Up to 200 C

- ❖ Up to 60 bar
- **❖ Up to 250 C**

♦ Higher CO₂ loading

TCCS-6 Trondheim-Norway, June 14-16, 2011

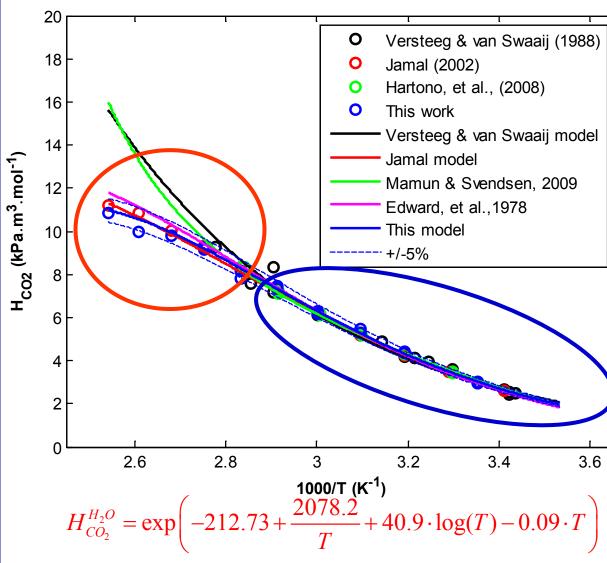

N₂O and CO₂ solubility was measured:

- 1. Water
- 2. Neutralized amine system with equinormal amount of amine and H₂SO₄

```
MDEA 50wt% + 2.2 M H<sub>2</sub>SO<sub>4</sub>
MDEA 70wt% + 3.1 M H<sub>2</sub>SO<sub>4</sub>
```

Results and discussion

Comparing N₂O solubility in H₂O with literature

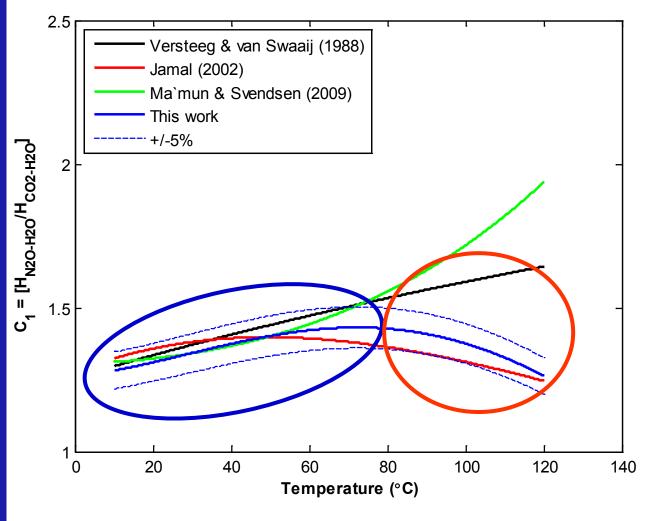


- ❖ Very good agreement up to 70C within +/- 5%
- Discrepancy at higher temperature
- New high pressure apparatus gave certainty at higher temperature

TCCS-6 Trondheim-Norway, June 14-16, 2011

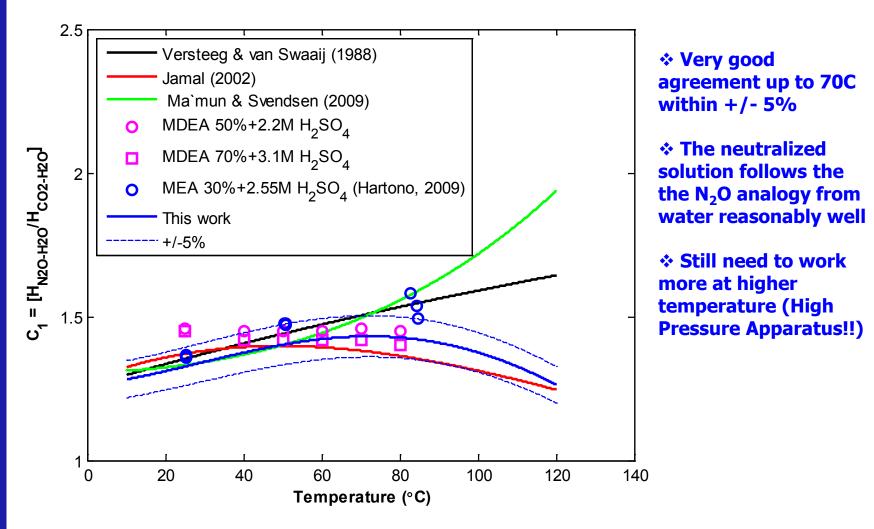
AARD = 4%

Comparing CO₂ solubility in H₂O with literature



- ❖ Very good agreement up to 70C within +/- 5%
- New data for higher temperature

TCCS-6 Trondheim-Norway, June 14-16, 2011


Comparing the obtained N₂O analogy for water with literature

- ❖ Very good agreement up to 70C within +/- 5%
- Discrepancy at higher temperature
- ❖ We provide a new correlation for N₂O Analogy for a wider range of temperature

Comparing the obtained N₂O analogy from Neutralized Solution

Conclusions

- ☐ The experimental procedure and apparatus was validated and the results obtained are consistent with literature data up to 70C
- N2O Analogy was found to be valid even at high amine concentrations (50 wt% and 70 wt%)
- We provide a new correlation for the N₂O analogy

Future Work

■ More work needed to measure the Henry's law constant at higher concentrations of amine and higher temperatures

Acknowledgement

The financial support from the CCERT project is greatly appreciated.

- The CCERT project is supported by:
- □ the Research Council of Norway (NFR 182607)
- Shell Technology Norway AS
- Metso Automation
- Det Norske Veritas (DNV) AS
- Statoil AS

