Polymer membranes for flue gas treatment

Kitty Nijmeijer

June 2011
Contents

• Flue gas treatment and motivation
• Water vapor selective membrane materials
• Experimental results
 ➢ Sorption
 ➢ Diffusion
 ➢ Permeation: binary and ternary mixtures
• Conclusions
Typical composition flue gas

<table>
<thead>
<tr>
<th>Gas</th>
<th>Amount (vol.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂</td>
<td>71.8</td>
</tr>
<tr>
<td>CO₂</td>
<td>13.6</td>
</tr>
<tr>
<td>H₂O</td>
<td>11.2</td>
</tr>
<tr>
<td>O₂</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Typical composition flue gas

<table>
<thead>
<tr>
<th>Gas</th>
<th>Amount (vol.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂</td>
<td>71.8</td>
</tr>
<tr>
<td>CO₂</td>
<td>13.6</td>
</tr>
<tr>
<td>H₂O</td>
<td>11.2</td>
</tr>
<tr>
<td>O₂</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Water vapor selective polymers

- Pebax® 1074

\[
\text{HO-}\left[\text{C-PA-C-O-PE-O}\right]_n\text{H}
\]

- Sulfonated poly (ether ether ketone) (SPEEK)
Water vapor selective polymers

PEBAX®
- Rubbery
- Block copolymer
- Hydrophilic soft blocks and hydrophobic hard domains

SPEEK
- Glassy
- Ionic groups
- Highly hydrophilic
Gas separation with polymer membranes

\[P = D \cdot S \]

\[\alpha = \frac{P_i}{P_j} = \frac{D_i}{D_j} \cdot \frac{S_i}{S_j} \]

Diffusivity
Size dependent:
\[\text{H}_2\text{O} < \text{CO}_2 < \text{N}_2 \]

Solubility
\[T_c \text{ dependent:} \]
\[\text{N}_2 \ll \text{CO}_2 \ll \text{H}_2\text{O} \]
Water vapor sorption
Water vapor sorption

PEBAX®
Flory Huggins sorption

SPEEK
Dual Mode
Flory Huggins sorption

$T = 50^\circ\text{C}$
Water clustering phenomena

Cluster integral G_{ww}/N_w vs. Activity

- PEBAX®
- SPEEK

$T = 50^\circ C$
Water vapor diffusion
Water vapor diffusion

$T = 50^\circ\text{C}$

Fickian diffusion coefficient/ $\times 10^{-12} \text{ m}^2/\text{s}$

- Pebax
- SPEEK

Activity / -

T = 50°C
Water vapor (H₂O) permeation
Water vapor permeation ternary mixtures

T = 50°C; Ternary feed: H₂O/N₂/CO₂
Water vapor permeation ternary mixtures

$T = 50\, ^\circ\text{C};$ Ternary feed: $\text{H}_2\text{O}/\text{N}_2/\text{CO}_2$

Sorption + desorption

SPEEK

PEBAX®
Gas (CO$_2$ and N$_2$) permeation
Gas and vapor permeation

Binary mixtures

- $\text{N}_2/\text{H}_2\text{O}$
- $\text{CO}_2/\text{H}_2\text{O}$

Ideal, hypothetical permeability and selectivity CO_2/N_2 in ternary mixtures

Ternary mixtures

- $\text{CO}_2/\text{N}_2/\text{H}_2\text{O}$

Real permeability and selectivity
Permeation binary (ideal) mixtures

\[T = 50^\circ\text{C}; \text{H}_2\text{O/N}_2 \text{ or } \text{H}_2\text{O/CO}_2 \]
Permeation binary (ideal) and ternary mixtures

CO_2 Sorption and desorption (binary + ternary)

PEBAX^\circledR

Desorption ternary

Sorption ternary

Ideal behavior

binary feed

$T = 50^\circ\text{C}$; Binary: $\text{H}_2\text{O}/\text{N}_2$ or $\text{H}_2\text{O}/\text{CO}_2$; Ternary: $\text{H}_2\text{O}/\text{N}_2/\text{CO}_2$
Permeation binary (ideal) and ternary mixtures

T = 50°C; Binary: H₂O/N₂ or H₂O/CO₂; Ternary: H₂O/N₂/CO₂
Selectivity binary and ternary mixtures

\(T = 50^\circ\text{C} \); Binary: \(\text{H}_2\text{O}/\text{N}_2 \) or \(\text{H}_2\text{O}/\text{CO}_2 \); Ternary: \(\text{H}_2\text{O}/\text{N}_2/\text{CO}_2 \)
Conclusions

• Rubbery PEBAX®
 – Relaxation or hysteresis not observed
 – Permeation performance independent on mixture composition

• Glassy polymer SPEEK
 – Relaxation, hysteresis phenomena
 – Strong dependence of permeation performance on mixture composition (binary vs. ternary mixtures)
Conclusions

• Impact of water vapor strongly dependent on polymer structure and morphology

• High water permeabilities combined with high water/light gas selectivities

• Reasonable CO₂ permeabilities combined with high CO₂/N₂ selectivities
Acknowledgements

Jens Potreck
Katja Fischbein
Sander Reijerkerk
Hylke Sijbesma
Matthias Wessling

References

Amsterdam, The Netherlands

July 23-29, 2011

www.icom2011.org