

P. M. Follmann, C. Bayer, M. Wessling, T. Melin

RWTH Aachen
Chemical Process Engineering

Some conversations ...

Polymer

membranes?

"I have heard they corrode ..."

- How much does it save?
- How much can it achieve?

"I mean in %?"

Does it work?

- One year of pilot plant operation in Borselen/NL
 - Water removal
 - Ash hick-up survived
- New pilot plant studies running currently

"How much does it do in %?"

Definition of boundary conditions (I)

- Power plant
 - 560 kg/s flue gas
 - 1 bar, 50°C, saturated in water
 - CO₂ 13.6%, N₂ 71.2%, O₂ 3.2%
 - Contaminants (SO_x, NO_x)

• How much to be captured?

- CO₂ requirements?
 - CO₂ concentration
 - Trace components

Definition of boundary conditions (II)

- Delivery to pipeline at 130 bar and 30°C
- Composition
 - > 95.5 mole-% CO₂
 - max. 4 mole-% of air gases (N₂, Ar, O₂)
- 2 scenarios for O₂ content
 - High purity (only 100 ppm allowed)
 - Up to 4 mole-% O₂
- SO_x and NO_x (max. 0.5 mole-% in worst case)
- Residual water content: not specified
- Optimal capture rate: 90% assumed as optimal

Gas separation membranes

Polymeric membranes most suitable

	CO ₂ Permeance	CO ₂ /N ₂ Selectivity	CO ₂ /O ₂ Selectivity	CO ₂ /SO ₂ Selectivity
PPO	4.1	20	4.5	1
PEO	1.25	45	15	0.2
SPEEK	0.07	85	28	1

- Permeance H₂O >> permeance CO₂
- Mass transfer across membrane: $n_i = Q_i A_{Mem} (x_i p_F y_i p_P)$
- Pressure ratio across membrane: $\Phi = p_F/p_P$

Depleted flue gas

Driving force generation (I)

Feed compression

Low pressure at the permeate side

Sweeping at the permeate side

Feed compression and suction

Driving force generation (II)

- Feed compression
 - Area ↘ , energy ↗
 - No pressure limitation
- Suction
 - Area ↗ , energy ↘
 - Pressure limitation: ca. 200 mbar
- Sweeping
 - Only applicable in combination with suction
 - Process steam no adequate sweeping agent
- Feed compression + suction
 - Combines advantages of both technologies
 - Most likely concept for driving force generation

Membrane – A selective splitter

Single-stage membrane system (PPO membrane)

Single-stage membrane system (PPO membrane)

Single-stage membrane system (PEO membrane)

Summary single-stage membrane system

- Trade-offs
 - CO₂ enrichment CO₂ recovery
 - Energy requirement membrane area
- Single-stage processes only applicable for enrichment
 Further enrichment / purification by 2nd membrane stage
- O₂ and SO₂ enrich at the low pressure side
 Further treatment to achieve low O₂ and SO₂ content

Economic framework

Reference power plant

Capital cost	Euro/MWh _{el}	20.50
Fuel cost	Euro/MWh _{el}	15.20
O&M cost	Euro/MWh _{el}	4.60

Membrane process

Compression	Euro/kW	500
Vacuum	Euro/kW	1000
Membrane	Euro/m ²	5 - 50

Summary and conclusions

Chemical durability of polymeric materials proven during one year piloting

- Two stage membrane processes required
 - + 90% CO₂ recovery in conjunction with 95% purity
 - + Simple integration in power plant process
 - + Competitive economics compared to absorption process
 - + Scalable modular membrane area
 - CO₂ product does not comply with strict purity requirements
 - Specific energy requirement higher than chemical absorption
 - Membrane cost have significant impact on process economics

This study is part of the NanoGLOWA project (NMP3-CT-2007-026735), which has been financially supported by the EU Commission within the thematic priority NMP of the Sixth Framework Program.

Single-stage membrane system (PEO membrane)

• 90% CO₂ recovery: PPO / PEO system

Feed pres. 1 st /2 nd stage	Energy [kJ/kg]	Area [10 ⁵ m ²]	O ₂ [%]	SO ₂ [ppm]
3 bar / 4 bar	1910	7	1.8	510
4 bar / 4bar	1940	5	1.8	510

90% CO₂ recovery: PEO / SPEEK system

Feed pres. 1 st /2 nd stage	Energy [kJ/kg]	Area [10 ⁶ m ²]	O ₂ [%]	SO ₂ [ppm]
2 bar / 4 bar	1350	8	1.2	520
3 bar / 4bar	1400	5.1	1.2	520