Oxidative degradation of amines using an open- and closed-batch reactor

Solrun Johanne Vevelstad^a, Andreas Grimstvedt^b, Aslak Einbu^b, Hélène Lepaumier^a, Nuria Tavera Valero^a, Hanna Knuutila^b, Eirik Falck da Silva^b, and Hallvard Fjøsne Svendsen^a

^aNorwegian University of Science and Technology, 7491 Trondheim, Norway ^bSINTEF Materials and Chemistry, 7465 Trondheim, Norway

TCCS6

Outline

- Introduction
- Experimental conditions
 - Open batch system
 - Closed batch system
 - Comparison

Results

- Open batch system
- Closed batch system
- Comparison
- Summary

Introduction

- Amine degradation causes problems
 - Solvent loss
 - Corrosion
 - Fouling
 - Foaming
 - Emission of degradation compounds
- Literature describes three different oxidative degradation setups
 - Closed-batch reactor at elevated temperature and oxygen pressure¹
 - Open-batch reactor at 55 C where the CO_2 -loaded amine solution is sparged with a wet blend of CO_2 and air²⁻⁴
 - Integrated solvent degradation apparatus (ISDA)⁵
- 1) Lepaumier, H., et al. <u>Ind. Eng. Chem. Res. (</u>2009).**48**: 9068.
- 2) Chi, S., et al. Ind. Eng. Chem. Res. (2002).41: 4178.
- 3) Goff, G.S., *Phd thesis*, in *Chemical Engineering*. 2005, University of Texas: Austin. p. 283.
- 4) Lepaumier, H., et al. Energy Procedia (2011) 4, 1652.
- 5) Closman, F., et al. Energy Procedia (2011) 4, 23.

Open batch

- Open batch glass reactor
- 30 wt% MEA
- Loaded with CO_2 ($\alpha = 0.4$)
- 0.35 L/min Air + 7.5 mL/min CO₂
- 55 C for 3 weeks
- Liquid samples are taken out regularly from the reactor

Closed batch

- Closed batch glass reactor with Sulzer DX packing in SS316
- 30 wt% MEA
- Loaded with CO_2 ($\alpha = 0.4$)
- Circulation of gas (air) and liquid
 - Gas flow: 24.6 NL/min
 - Liquid flow: 0.91 L/min
- 50 55 C for 3-4 weeks
- CO₂ and O₂ in the gas are logged
- Liquid samples are taken out from the liquid line regularly

Oxidative degradation apparatus

Similarities

- An amine solution loaded with CO₂
- Glass apparatus

Differences (closed compared to open)

- Use structured packing instead of bubbling through the sump for mass transfer
- Recirculation of both gas and liquid
- Measure temperature in the sump and in the packing
- Temperature and gas (O₂, CO₂) composition are logged
- Higher gas flow through the system

Results open batch

Degradation compounds

Degradation compounds – NaOH treatment*

 2.5 times more formate after NaOH treatment

 Oxalate only after NaOH treatment

Sexton, A.J., Phd thesis: Amine oxidation in CO₂ capture processes, 2008, The University of Texas: Austin. p. 262.

Results closed

Degradation compounds Ex1

Degradation compounds Ex1 and Ex2

Degradation compounds – NaOH treatment*

Experiment 1

*Sexton, A.J., *Phd thesis: Amine oxidation in CO2 capture processes*, 2008, The University of Texas: Austin. p. 262.

Norwegian University of Science and Technology

Experiment 2

Results open versus closed

Amine loss

	Method		6
Experiment	LC-MS	Titration	
Open (blue)	12.8	13.9	Lation 3
Closed Ex1 (purple)	23.2	23.7	2 - MEA open → MEA closed 1 -
Closed Ex2 (green)	-	12.5	0 0 100 100 100 100 100 100 100

Degradation compounds

Open:HEF >HEGly > OZD > HEI > BHEOX > HEA > HEPOClosed Ex1:HEF > HEI > BHEOX > OZD > HEA > HEGly > HEPO

Summary

- Mainly the same degradation compounds discovered in both setups
- The order of the degradation compounds seems to be different
 - Presence of packing in closed setup is likely the reason
- The nitrogen balance still not closed

Acknowledgement

The work is done under the SOLVit project, performed under the strategic Norwegian research program CLIMIT.

The authors acknowledge the partners in SOLVit: Aker Clean Carbon, Gassnova, EON, Scottish Power and the Research Council of Norway for their support.

