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Future-proofing capture plants against technology developments

Capture technology is going to change
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Capture technology is going to change

Motivations for future-proofing power generation asset

Keep the plant license to operate by securing compliance with 
stricter environmental legislation 
New solvent becomes Best Available Technology (e.g. for lower 
carryover in flue gas)
Level of capture has to be increased beyond ~ 90%



Future-proofing capture plants against technology developments

Capture technology is going to change

Motivations for future-proofing power generation asset

Keep the plant license to operate by securing compliance with 
stricter environmental legislation 
New solvent becomes Best Available Technology (e.g. for lower 
carryover in flue gas)
Level of capture has to be increased beyond ~ 90%

Improve power plant economics 
Increase plant capacity (MW sent out for sale)
Raise efficiency
Reduce exposure to carbon costs
Reduce operating costs 
Enhance reliability and availability



Methodology – Step 1

 What is a better solvent?

 Focus on electricity output penalty
Electricity output penalty = Efficiency penalty / Fuel specific emissions
Electricity output penalty (kWhe/tCO2)
Efficiency penalty (kWhe/kWhth or % point LHV)
Fuel specific emissions (tCO2/kWhth)

 Overall process assessment required
Electricity output penalty = 
(loss of generator output + compression power + ancillary power) / CO2 mass flow
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Methodology – Step 1

 Dedicated steam cycle and compression model
Relate electricity output penalty of new-build plants to key amine process parameters

- Solvent energy of regeneration G, GJ/tCO2

- Solvent temperature of regeneration T, ºC
- Desorber and delivery pressure, P0 and P1, bar
- Ancillary power, EOPa, kWh/tCO2

 Electricity output penalty of steam extraction
EOPx = (G * a0 + a1) * T3 + (G * a2 + a3) * T2 + (G * a4 + a5) * T + G * a6 + a7

 Electricity output penalty of compression
EOPc = b0 * ln(P0) + b1 * P1

2 + b2 * P1 + b3

 Overall electricity output penalty for new-build units
EOP = EOPx + EOPc + EOPa

Parameter values available in Lucquiaud, M., Gibbins, J. (2011), Chem Eng Res Des, In 
press, doi:10.1016/j.cherd.2011.03.003 
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Methodology – Step 2

 Sensitivity of electricity output penalty to key solvent parameters
 Specific heat capacity
 Thermal stability
 Enthalpy of absorption
 Mass transfer 

 Reference plant: New-build unit with post-combustion capture
 Reference solvent: 30%wt MEA

 Objectives of methodology: 
- Generate a range of hypothetical solvents, i.e. normally related 

key solvent parameters are now artificially independent
- Assess performance for dedicated new-build plants for each 

solvent
- Identify pieces of equipment leading to performance lock -in
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Preliminary findings 

 Critical pieces of equipment and related solvent properties
 Steam turbine – solvent temperature and energy of regeneration
 Absorber – kinetics and mass transfer
 Compression - enthalpy of absorption, solvent temperature of 

regeneration
 Desorber - enthalpy of absorption, solvent temperature of 

regeneration
 Pipeline (if increased capture levels)
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Methodology – Step 3

 Economic assessment of upgrading CCS plants
 Two key research questions:

 What is the financial value of the option of being able to upgrade 
a CCS plant?  The financial value of the option is the maximum 
cost for pre-investment  for future-proofing the plant and for the 
cost of the upgrade that will break-even under the assumptions 
made in this study.

 What are the potential strategies to inform an investment 
decision, i.e. whether and when to exercise a possible 
upgradability option? 



Methodology – Step 3

 Methodology Summary:
 Real option approach with a stochastic cash flow model.
 Long run marginal costs of electricity are used to justify the 

upgrade decision



Methodology – Step 3

 Methodology Summary:
 Real option approach with a stochastic cash flow model.
 Long run marginal costs are used to justify the upgrade decision

 Variables  selected
 Additional investment for future proofing the plant
 Fuel price
 Carbon price
 Technology progress ratio: 

Reduction of the electricity output penalty occurs per 
doubling of the global installed capacity

 The deployment rate follows the IEA Blue Map Scenario.



Decision diagram



Assumptions of the Reference Plant



Methodology – Step 3

 Methodology Summary:

 Least square regression with Monte-Carlo simulation is used to 
model the financial value at each option decision node

 Uncertainties on coal price, carbon price and technology 
improvement rates are the drivers for the options value

 The main driver for the upgrade is a possible reduction of the 
electricity output penalty as new technologies enter the market.



Probability of Upgrades in the Lifetime

Lifetime of plant



Value of the upgradability option: 92% progress ratio



Sensitivity analysis

1. Change in Progress Ratio 90% 91% 92% 93% 94%

Option Value

(US$:million)

165.3 145.4 126.7 104.3 85.5

Impact on COE (US$/MWh) -2.4 -2.16 -1.92 -1.71 -1.53

2. Change in additional CAPEX 

for future-proofing and the 

upgrade

3% 4% 5% 6% 7%

Multiple Options (US$) 167.4 148.5 126.7 108.9 94.3

Impact on COE (US$/MWh) -2.04 -1.99 -1.92 -1.83 -1.76

Chance of Second Upgrade 99.92% 98.45% 79.32% 36.58% 12.01%



Conclusions

 Technology upgrades may be driven by future policies and/or 
technology developments

 Future-proofing power plants need to include the overall CCS 
process 

 Given that future technology developments are by nature uncertain 
and potential savings are uncertain too (Energy savings, timing for 
upgrade, Fuel and carbon cost, Capital cost): Only low-cost options 
with high return can be justified.

 Limited additional upfront capital costs to future-proof CCS plants 
may be justified. The value of a future-proofing option is, however, 
strongly dependent on technology learning rate assumed.

 A first upgrade is very likely to take plant 7 to 10 years after the plant 
has been commissioned.

 A second upgrade during the plant lifetime is also very likely



 Forthcoming report commissioned by IEAGHG  
Incorporating future technological improvements in 
existing CO2 capture plants
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