Packing Characterization-Mass Transfer Properties

Chao Wang Carbon Management Project of PSTC Advisors: Gary Rochelle and Frank Seibert Research Engineer: Micah Perry 6th Trondheim CCS Conference June 15, 2011

Mass Transfer in a Typical CO₂ Capture Process

 $\frac{\Delta P_{CO2}}{\Delta c_{CO2}})^*$ H_{CO2} $+\overline{a\sqrt{k_2[Am]D_{CO2}}}$ $k_G a$ k_1a $K_{G}a$

Research objective

- a_e—effective gas-liquid contact area--CO₂ capture absorber
- k_Ga–gas film mass transfer coefficient– water wash, gas cooler
- k_La– liquid film mass transfer coefficient– stripper
- Objective: -measure a_e, k_G and k_L for novel structured and random packings
- develop a fundamental model can predict a_e, k_G and k_L for novel packings.

Packed Column

Packing Information

Packing Name	RSP 250	FP 1.6 Y HC	Mellapak 2X	RSR #0.5	1" Plastic Pall Ring
Туре	Hybrid	High Capacity	60° angle	Random metal	Random plastic
Surface Area (m²/m³)	250	295	205	250	210
Corrugatio n Angle	N/A	45	60	N/A	N/A
Channel Side, S (m)	N/A	0.017	0.02	N/A	N/A
Void fraction, ε	0.92	0.95	0.99	N/A	N/A

Effective gas-liquid contact area

- Absorption of CO₂ into 0.1 N NaOH solution
- Pseudo first order reaction
- Liquid phase control

$$k'_{g} = \frac{\sqrt{k_{OH^{-}}[OH^{-}]D_{CO2,L}}}{H_{CO2}}$$

Gas-liquid contact area of MP2X

Fractional Area, a_e/a_p

Tsai's area model (Tsai, 2010)

Tsai R. "Mass Transfer Area of Structured Packing". The University of Texas at Austin. Ph.D Dissertation. 2010

Gas-liquid contact area

Gas Film Mass Transfer Coefficient

- Gas film control (SO₂/NaOH solution system)
- Instantaneous reaction
- Liquid film resistance can be neglected

 SO₂ concentration is measured by two different range SO₂ analyzers. Outlet sample SO₂ analyzer can detect
0.1 ppb SO₂ → can use 10 feet packing

Gas film mass transfer coefficient k_G of MP2X

k_G summary

 Rocha JA, Bravo JL, Fair, JR. "Distillation Columns Containing Structured Packings: A Comprehensive Model for Their Performance.2. Mass-Transfer Model." Ind Eng Chem Res. 1996;35:1660–1667.

k_G model

Liquid film Mass Transfer Coefficient

- Liquid film control (Air/Toluene/Water system)
- No chemical reactions
- Mass transfer resistance mainly in liquid film

stripping:

$$k_L a = \frac{u_L}{Z} \ln(c_{Lin} / c_{Lout})$$

$$k_L = \frac{k_L a}{a_e}$$

Liquid film mass transfer coefficient k_L of MP2X

k_L summary

Brunazzi² dimensionless k_L model (1997)

$$Sh_L = A \frac{Gz^B}{Ka^C}$$
 A=409, B=0.5, C=0.09

$$Gz = \operatorname{Re}_{L} Sc_{L} \frac{\delta \sin \theta}{H_{el}} \quad \operatorname{Re}_{L} = \frac{\rho_{L} SU_{LE}}{\mu_{L}} \quad Sc_{L} = \frac{\mu_{L}}{\rho_{L} D_{L}}$$

$$Ka = \frac{\sigma^{3} \rho_{L}}{\mu_{L}^{4} g} \qquad \delta = \left(\frac{3\mu_{L}}{\rho_{L}g\sin\theta} \frac{U_{LS}}{h_{L}\sin\theta}\right)^{0.5} \qquad u_{LE} = \frac{u_{LS}}{\varepsilon h_{L}\sin\theta}$$

- Consider the mixing of liquid phase occurs at junctions. Kapista number Ka
- Includes the flow path length factor, which is $H_{el}/\sin\theta$
- Includes packing geometry factor S, liquid film thickness
- 2.Brunazzi E, Paglianti A. "Liquid-Film Mass Transfer Coefficient in a column Equipped with Structured Packings." Ind Eng Chem Res. 1997;36:3792-3799

k_L model

Conclusions

• a_e is a function of L, $\sim u_L^{0.155}$, not a function of G,

Tsai's area model:
$$\frac{a_e}{a_p} = 1.42 [(\frac{\rho_L}{\sigma})g^{1/3}(\frac{Q}{A}*\frac{1}{a_p})^{4/3}]^{0.116}$$

• $k_G \sim u_G^{0.88}$, not a function of u_L Modified RBF k_G model: $Sh_G = 0.0317 * \text{Re}_G^{0.88} Sc_G^{0.33}$

• $k_L \sim u_L^{0.74}$, not a function of u_G Modified RBF k_L model: $Sh_L = 409 * Gz^{0.5} Ka^{-0.09}$

Thank You

Chao Wang

wangchao@che.utexas.edu