Definition of Hypothetical Impact Scenarios for CO₂ Storage Sites: An Input to the RISCS Project

A. Paulley^{1*}, R.Metcalfe², M. Egan¹, P. R. Maul², L. Limer¹, and the RISCS Project Team ¹Quintessa Limited, Chadwick House, Birchwood Park, Warrington, WA3 6AE, UK ²Quintessa Limited, 14 Station Road, Henley-on-Thames, Oxfordshire, RG9 1AY, UK *richardmetcalfe@quintessa.org

Keywords CO₂ storage, Impacts, System analysis, Scenarios

Facilities for the geological storage of carbon dioxide (CO_2) as part of carbon capture and storage (CCS) schemes will be designed to prevent any leakage from the defined 'storage complex'. However, developing regulations and guidance throughout the world (e.g. the EC Directive and the USEPA Vulnerability Evaluation Framework) recognize the importance of assessing the potential for environmental impacts from CO_2 storage. RISCS, a European (FP7) project, aims to improve understanding of those impacts that could plausibly occur in the hypothetical case that unexpected leakage occurs.

RISCS is concerned with the potential impacts that might result should CO_2 leak from a storage complex, however unlikely. Unintended displacements of natural formation fluids such as brines might also impact upon sensitive environments, but are not a priority for the work because the processes leading to these impacts are relatively well understood. Pipeline failures during operations could lead to impacts similar to those associated with some forms of CO_2 leakage and therefore are not considered separately.

To help focus RISCS research on feasible CO₂ storage concepts and to provide a framework for communicating the results, a set of reference European receptor environments and associated high-level impact scenario descriptions were defined. Here, a scenario is: 'A plausible description of the potential evolution of a system according to the nature of the features, events and processes (FEPs) that might act within and upon it.' Scenarios were developed jointly by all project partners at an expert workshop, and subsequently during reviews of the workshop report. The workshop outcomes were audited against established lists of Features, Events and Processes (FEPs) relevant to storage systems, and compared with issues and uncertainties identified for other project activities. The work produced a small number of scenarios that broadly represent the main types of impacts that could occur. A distinction is made between marine and terrestrial environments (Table 1). Within each type of environment, receptor types and habitats will primarily vary according to climate (terrestrial environments) and water depth, salinity and temperature (marine environments), although other factors will also be relevant. For each environment, the developed scenarios are of three main types:

- A 'Normal Evolution' scenario has no CO₂ leakage and the site evolves as designed, as it would in the absence of CO₂ storage. This is by far the 'most likely' scenario and needs to be explored to understand the impacts that could be associated with any leaks, as a deviation from the norm.
- 'Alternative Evolution 'Impact'' scenarios, describe potential low-likelihood CO₂ leakage to be evaluated by the RISCS project (Table 2).

 'Alternative Evolution 'Impact'' scenarios, describe potential low-likelihood CO₂ leakage that will not be evaluated in detail by the RISCS project, because they are of low priority taking into account the project aims (e.g. displacement of saline formation water), or because their effects would be similar to one of the scenarios that is being considered.

Terrestrial Environments	Marine Environments
Maritime Temperate Representative of a	Cool, temperate, deep with deep water
northern European, cool climate (e.g.	(> c. 60 m, typically with depths of several
UK, Netherlands etc)	hundred metres) located on the continental
	shelf remote from shoreline influences (e.g.
	northern North Sea, or to the west of Norway)
Continental Considers climate associated with	Cool, temperate, shallow with water depth of a
northern (but not Arctic) European continental	few tens of metres, located relatively close to
land mass countries	land (e.g. southern North Sea)
Mediterranean Representative of warmer,	Warm shallow with relatively warm water a
more arid, southern European climates	few tens of metres deep, located relatively
	close to land (e.g. within the Adriatic)
Generic Urban Specifically designed to	Low salinity (saline, but substantially lower
explore potential impacts to humans should a	than mean ocean salinity) with water depth of
storage system be located close to a large urban	a few tens of metres, located relatively
centre	close to land (e.g. in the Baltic Sea)

Table 1: Reference environments

Table 2: Impact scenarios

Terrestrial Environments Marine Environments	
Direct release to atmosphere, via a	Localised direct release of free CO ₂
well (high flux for a relatively short time	via the sediment or directly to the water
period – e.g. days)	column above the sea bed via a point source
Localised release to soil as a result of	Diffuse direct release of free CO ₂ via the
wells / faults / fractures, leading to high	sediment or directly to the water column
concentrations of CO ₂ in near surface	over a wide area
Localised release to soils as a result of	Localised release of CO ₂ -charged water
wells / faults / fractures, leading to	through the sediment or directly to the
long-term low concentrations of CO_2 in near	water column via a point source
surface	
Localised release to freshwater lakes via	Diffuse release of CO ₂ -charged water
fractures / faults	through the sediment and subsequently to
	the water column over a wide area
Diffuse releases to surface and near- surface	
systems	
Localised release to aquifers that may be	
exploited as drinking or irrigation water	
resources	
Release to the urban environment	