Solvent Reclaiming by Sulfate Precipitation

Rafique, Humera A., Rochelle, Gary T.*

Department of Chemical Engineering, The University of Texas at Austin, 1 University Station C0400, Austin TX, 78712

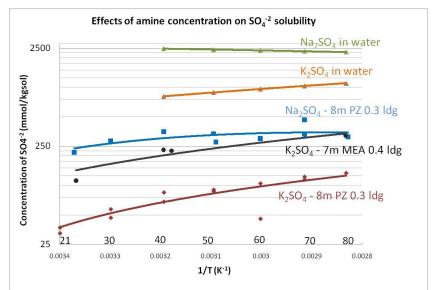
humera@che.utexas.edu

Keywords: CO₂ capture, sulfate removal, solvent reclaiming, post combustion capture

Abstract

An important issue in post-combustion CO_2 capture is the accumulation of impurities in the lean amine solvent. In particular, trace amounts of sulfur dioxide (SO₂) can react with the amine to form a heat stable salt containing sulfate ions, which can accumulate and hinder the absorption and stripping capacity of the amine. Thus, sulfate removal is necessary to re-use the amine more efficiently. Crystallization reclaiming by precipitation of the sulfate is being studied for this purpose. K₂SO₄ solid solubility experiments were carried out for 2 m to 8 m PZ between temperatures of 25 °C and 80 °C, and an empirical model was developed for the solubility of K₂SO₄:

 $\ln(\text{Ksp}) = 5.55 \times 10.3 - 1.17(\text{eq. mol amine}) - 4630/T + 8.96.$


A similar equation for the solubility of Na₂SO₄ in PZ is also developed.

Excess salt was added to the PZ solution. The temperature of the solution varied between room temperature and 80 °C. Solution was sampled using a filtered syringe and diluted in DDI water to prevent crystallization. Experimental samples were analyzed for Na⁺, K⁺, SO₄⁻², CO₂, and PZ concentrations in the cation chromatograph, anion chromatograph, and TIC.

As shown in Figure 1, Na_2SO_4 is more soluble in PZ than K_2SO_4 .

For both salts, the solubility has a greater dependence on amine concentration than temperature. If SO_4^{-2} is the main impurity in the CO_2 capture system, the amine removed for reclaiming can be concentrated to high

Figure 1 Comparison of Na₂SO₄ and K₂SO₄ solubility in 8 m PZ

PZ concentrations at high temperatures (without affecting the solubility of SO_4^{-2} in PZ). This way SO_4^{-2} along with the other heat stable salts present can be removed together in a single thermal reclaiming procedure.