Cross-linked PEG and 2D nano-materials based mixed matrix membranes (MMMs) for CO₂ capture

Zhongde Dai, Luca Ansaloni, Liyuan Deng

Department of Chemical Engineering
Norwegian University of Science and Technology,
*Corresponding author: deng@nt.ntnu.no

Trondheim, 12-14.06.2017
Outline

- **Introduction**
 - Background
 - NANOMEMC2 project

- **Membrane fabrication**

- **Results and discussion**
 - *Method 1---Thermal crosslinking*
 - *Method 2---UV crosslinking*
 - *Method 3---Interfacial polymerization*

- **Conclusions**
PEG membrane CO$_2$/N$_2$ separation performances

- **Low Mw:**
 Liquid state, bad mechanical properties

- **High Mw:**
 Highly crystalline, low permeability (P$_{CO_2}$~12 Barrer)

- Form block copolymers
 (e.g. Pebax, polyactive)

- Form blend membranes
 (e.g. Pebax/polyactive/PSf + liquid PEG)

- Form cross-linked membranes
 (e.g., UV crosslinking, thermal crosslinking)

S.L. Liu et al. / Progress in Polymer Science 38 (2013) 1089–1120
H.J. Liu et al., Nanoscale, 2013, 5, 9984–9987
Introduction

MMMs based on 2D materials

Advantages of 2D materials:

- High-aspect-ratio;
- Nanoporous ‘perforations’
- Small loadings (<2 wt.%)
- Favorable for thin-film composite membranes

Examples:

- Graphene/GO/RGO;
- Transition metal Di-chalcogenides; (MoS$_2$)
- 2D Metal organic frameworks(MOFs) (CuBDC/ZIF8L)
Introduction---Nanomemc² project

Nanomemc²---NanoMaterials Enhanced Membranes for Carbon Capture

- **Goals:**
 - To fully develop the potential of membranes for CO₂ capture;
 - To increase the efficiency of the capture step;
 - To reduce the overall CCS cost below the value of 40€/tonne of CO₂ avoided

- **Aims:**
 - To overcome current limitations by focusing on the development of innovative CO₂ selective membranes with high flux and selectivity,

- **Methods:**
 - Nanofibrillated cellulose (NFC), Graphene (G) and Graphene Oxide (GO) suspensions will be produced /functionalized to enhance gas transport properties.

Please refer to our poster presented by Saravanan Janakriram: **Fine tuning of separation performances in nanocellulose based membranes for CO₂ capture**

More information can be found here: http://www.nanomemc2.eu/
Membrane fabrication

- Membrane fabrication

- PEGDGE
- PEG diaminos
- PEG diacylate
- Cross-linker
- TMC
- PEG diaminos

Method 1: Heating to 80 °C
Method 2: UV polymerization
Method 3: Interfacial polymerization

2D material
Cross-link site
PEG chain
Results—**PEG fabricated via Method 1**

Method 1—Thermal crosslinking

PEG + XLinker + Graphene → Mixing for a few hours → Sandwiched by two glass plate, heat at 80 ℃ for 4 hours

A-amine

[TETA][Tfa]

Jeffamine® ED-600/2003
Results—PEG fabricated via Method 1

FTIR spectrum

Results—PEG fabricated via Method 1

Single gas permeation

Single gas separation performances, dry condition
Attempts of fabricating PEG/graphene/GO MMMs

Membrane without Graphene/GO

Adding GO dispersion

Remove the water + heat treatment

heat treatment

Soak the membrane into GO solution

Can’t form membrane & bad mechanical strength

Results—PEG fabricated via Method 1
Results—PEG fabricated via Method 2

Method 2---UV crosslinking

PEG + XLinker + Graphene → Mixing for a few hours → Sandwiched by two quartz plate

PEG (35 wt.%) + XLinker (15 wt.%) + Free PEG (50 wt.%) → UV, HCPK

Results—PEG fabricated via Method 2

FTIR spectrum

C=\text{C} bond

Crosslinking time: 60 mins
Results — PEG fabricated via Method 2

Single gas permeation

<table>
<thead>
<tr>
<th>PEG (35wt.%)</th>
<th>X-linker (15wt.%)</th>
<th>Free PEG (50 wt.%)</th>
<th>CO₂ permeability</th>
<th>CO₂/N₂ selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>~250 Barrer</td>
<td>~35</td>
</tr>
<tr>
<td>Mw=250</td>
<td></td>
<td></td>
<td>~180 Barrer</td>
<td>~30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>~220 Barrer</td>
<td>~30</td>
</tr>
</tbody>
</table>
Attempts of fabricating PEG/GO MMMs

X-linker + Mixing with GO aqueous solution

Mixing for a few hours

Sandwiched by two quartz plate

UV light

Bad mechanical strength (too much water from GO dispersion)

GO aggregation

Phase separation

Remove water + UV

Remove water

PEG fabricated via Method 2

Results
Results—PEG fabricated via Method 3

Method 3---Interficial polymerization via spin coating

Organic phase

Aqueous phase

Spin coating, 1000rpm, 30s

Spin coating 1000 rpm, 30s

Organic phase

Aqueous phase

TMC

Jeffamine® ED-600/2003

GO solution: 2 mg/ml

1 wt.% in Hexane

1 wt.% in H_2O

PEG fabricated via Method 3
Results — PEG fabricated via Method 2

Membrane characterization

<table>
<thead>
<tr>
<th></th>
<th>PDMS support</th>
<th>PDMS+PEG</th>
<th>PDMS+PEG/GO (0.5 wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness:</td>
<td></td>
<td>1~1.3µm</td>
<td>1~1.3µm</td>
</tr>
<tr>
<td>Contact angle:</td>
<td></td>
<td>~20 degree</td>
<td>~20 degree</td>
</tr>
<tr>
<td>CO₂ permeance:</td>
<td></td>
<td>25~40 GPUs</td>
<td>12~18 GPUs</td>
</tr>
<tr>
<td>(\alpha_{CO₂/N₂}):</td>
<td></td>
<td>11~14</td>
<td>20~30</td>
</tr>
</tbody>
</table>
Conclusion remarks

- **Thermal, UV and interfacial crosslinking** have been employed to fabricated PEG-based membranes;

- Thermal crosslinking resulted in PEG membranes with superior CO$_2$/N$_2$ separation performances which surpass the Robeson upper bound;

- Attempts have been made to fabricate PEG/graphene/GO MMMs via thermal and UV crosslinking but not successful;

- PEG/Graphene MMMs have been successfully fabricated on PDMS support via spin coating. Adding GO into PEG significantly increased selectivity while sacrificing the gas permeance.

- More process parameters for the interfacial polymerizations (e.g., concentration, spin coating speed) are under optimization.
Thank you!

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 727734

Present results reflect only the author’s view - INEA is not responsible for any use that may be made of the information it contains.