Carbon-free firing of state-of-the-art gas turbines: technology readiness, potential impact and research challenges

Andrea Gruber & James Dawson TCCS-10, Trondheim, June 18-19 2019

➤The context: <u>zero-emission thermal power cycles</u>

Carbon-free firing of gas turbines: <u>technology readiness & potential impact</u>

➢ Research challenges: <u>stabilize flame, minimize fuel-dilution and emissions</u>

Air-breathing thermal power cycles: powering the world

2-stroke, low-rpm ICEs:

- ▶ 10-80 MW
- Cycle efficiency ~ 55%
- ➢ HFO, Diesel and NG
- MAN 'upgrades' to NH₃

- Gas + steam turbine (combined cycle):
- ➢ 50-800 MW
- \succ Cycle efficiency ~ 63%
- 6100 TWh installed capacity (NG-fired)
- Carbon-free firing of GTs 'within grasp'

High-bypass turbofan engine:

- > 100-600 kN thrust
- Cycle efficiency ~ 30-36%
- ➤ +30000 CFM56 sold
- Enough biofuel?

Thermal cycles are <u>not intrinsically dirty</u> but as clean as the <u>fuel</u> and <u>combustion technology</u> they utilize!

- \blacktriangleright H₂ to power completes <u>pre-combustion CCS</u> value chains
- Provides an optimal energy-carrier in <u>large-scale energy storage</u> schemes for integration of non-dispatchable & intermittent RES (power-to-gas-to-power)
- \succ Effectively a bridge between "fossil" and "green" energy sources (blue and green H₂)

Ammonia (NH₃)

- Convenient H₂-carrier for remote transport and/or long-term storage in all of the above
- \triangleright Represent a useful H₂-diluent (for stable combustion in gas turbines)

Both are *carbon-free* fuels: zero CO₂ emissions!

GT OEMs commited to 100% H₂ firing by 2030

GT-industry's expertise and resources committed to achieve 100% H₂, however:

- High-pressure/full-size R&D of GT combustion system is extremely expensive and cash-flow is limiting factor
- Interest by committed customers is needed
- Public intervention is beneficial in the form of
 - A legal framework for non-conventional fuels
 - Set goals, do not pre-select technologies
 - Public co-funding of RD&D efforts

The challenge: the high reactivity of hydrogen

Key factors in design of gas turbine combustors include:

the combustion velocity (flame speed)

the fuel reactivity and flammability (time and composition needed for ignition)

> the flame temperature (controlling dilatation and acceleration of the working fluid)

Stoichiometric combustion properties at 1 bar and 300 K	CH ₄	H ₂	NH ₃
Flame Speed	40 cm/s	300 cm/s	20 cm/s
Flame Temperature	~2200 K	~2400 K	~2050K
Flammability Limits (by volume %)	5-15	4-75	15-28
Ignition Energy (mJ)	0.28	0.011	680
Ignition Delay Time (ms) @ 1000K/17bar	45.6	6.2	N/A
LHV (MJ/Kg)	50	120	18

How to address hydrogen's high reactivity

Two strategies at hand for clean, stable and efficient hydrogen combustion in GTs:

- \succ "handle H₂ reactivity" (e.g. combustion staging) \rightarrow relies on autoigniton for flame stabilization
- \blacktriangleright "reduce H₂ reactivity" (e.g. fuel blending) \rightarrow rely on inert gases or less reactive fuels

SINTEF & NTNU work together with gas turbines OEMs at both approaches:

- Auto-ignition H₂ flame stabilization in FME NCCS/Task 5 (+Reheat2H2 KPN) w/<u>Ansaldo</u>
- > Hydrogen/nitrogen/ammonia-firing of a <u>Siemens</u> DLE burner (BIGH2/Phase III)
- > New activity starting-up in LowEmission Petrosenter w/Siemens & Ansaldo

Example: H₂ co-firing in DLE burner

Siemens Gas Turbines Hydrogen capability with DLE burner

SIEMENS

*Larfeldt et al. "Hydrogen co-firing in Siemens low NOx industrial gas turbines", PowerGen 2018

Example: staged combustion

<u>Ansaldo</u>'s reheat scheme: firing temperature of 1^{st} stage controls ignition time (t_{ign}) and <u>flame stabilization</u> in 2^{nd} stage!

Traditional Combustion

1st and/or single stage traditional combustor

Sequential Combustion

Courtesy of Ansaldo Energia

NTNU

SINTEF

Bottom line: large-scale power generation with hydrogen-rich fuels is feasible and R&D can help filling the remaining gap!

*Bothien et al, "Sequential Combustion in Gas Turbines – The Key Technology for Burning High Hydrogen Contents with Low Emissions", Asme Turbo Expo 2019, GT2019-90798

Technical challenges for H₂/H₂-rich fuels
 Current GTs are highly "*tuned*" to burn NG-air mixtures and transitioning to H₂ rich fuels needs to maintain:

 \succ low NO_x capabilities

combustor stability and operating range

> avoid de-rating the engine

improve dynamic loading (turn down/part load)

Requires different combustor design strategies for H₂ *and* H₂ *rich fuels* – *large innovation potential!*

Scientific (independent of combustor geometry)

The effect of pressure & temperature of H₂/H₂-rich mixtures on:
 Flame speed, ignition delay times, chemical kinetics, turbulence-chemistry interaction

Technical (some geometry dependence)

Ensure stabilisation of H₂/H₂-rich flames to prevent:
 Static instabilities: flashback and blow-off
 Dynamic instabilities: thermoacoustic oscillations

To understand static and dynamic instabilities we must use simplified geometries enabling detailed measurements and computations

To solve problems research activities over a range of TRLs is essential

DNS of reheat flame in simplified geometry

Single sector and annular combustor

Siemens SGT600/700/800 -Annular combustor

SINTEF

NTNI 0

SINTEF

NTNU

- Flashback occurs when the flame propagates much faster than the incoming flow velocity (S_T >> U)
- Always low-velocity regions in wakes and boundary layers

SINTEF

NTNU

40%NH3/45%H2/15%N2 blend matches T_{ad} and S_L for methane but exhibits order-of-magnitude deviation in blow-off limits

Effect of increasing H₂ on flame shape

Mean H_2/CH_4 - air flame shapes for increasing H_2

Conditions:
Power = 7kW
Power fraction, P_{H2}: 0-28%
>Volume fraction: 0-50%
>Equivalence ratio = 0.7

SINTEF

NTNU

Concluding remarks

- Combustion of H₂ fuels are a <u>technically viable route to large-scale</u> <u>decarbonisation</u> for the power generation sector with CCS
- Significant steps forward in co-firing H₂ with CH₄ have been already been made and GTs are commercially available
- There are still significant (and exciting!) scientific and technical challenges in combustion technology to get to zero carbon that need to be addressed

