Dimensioning the storage concepts for H21

... potentially the world's largest clean energy project ...

Rune Thorsen, Bamshad Nazarian, Philip Ringrose, Lars Hagesæther, Torgeir Melien & Henrik Andersen

Equinor ASA

TCCS10 Conference 2019

Our vision

Shaping the future of energy

- Competitive at all times
- Transforming the oil and gas industry
- Providing energy for a low carbon future

Open

Shaping the future of energy in a low carbon world

66

We will develop our business in support of the ambitions of the Paris climate agreement

> Eldar Sætre CEO and president Statoil

Open

Gas is a cost efficient enabler

... for a carbon neutral energy system

(gas and electricity)

Hydrogen and renewable electricity smartly integrated

Open

5 | TCCS-10

Liquid Hydrogen and Fuel-Cells for long haul Big Ships

Hydrogen fired CCGTs Clean Back-Up Power for Large Scale Intermittency

CCS for Industry without other Alternatives

Hydrogen for Large Scale Seasonal Storage

Open

UK Energy markets: **Huge Seasonal Variations**

UK Energy

- Gas dominated 800 TWh
- CO2 emission from gas = 160 mtpa
- Seasonal variations in heat only require 60-80 TWh storage/ flexible supply

Gas Power

- 20-25 GW installed capacity
- Majority are swing producers
- Increases with phase out of coal

Norwegian Gas to UK

- Functions as the UK «energy storage»
- 40% of Norwegian gas export
- Norway total gas export = 1100 TWh

Non-transport energy use (UK)

Open

H21 North of England

- System approach to decarbonise residential heating and distributed gas use (fuel switch from NG to H_2)
- Large-Scale: 12.5% of UK population, ~85 TWh
- Conversion starts 2028 with stepwise expansion to 2035 replacing more than 3.7 million appliances
- 17-18 Mt CO₂ reduction per year
- Continued use of existing infrastructure
- Security of supply copes with seasonal demand
- Offshore CO₂ storage in either UK or Norway
- Facilitating unlimited system coupling between gas and electricity
- UK-Norway partnership

Full report at https://northerngasnetworks.co.uk/h21-noe

Open

H21 supply concept – illustration

Storage demand – large seasonal swing

Screening of storage sites

UK SNS

Norway – Horda Platform

'Worms eye' view of the structures

Dassification Internal

Open

Derisking Northern Sites

- The Northern sites might accommodate a 15 Mtpa scenario, but struggle with the full Base Load or Seasonal CO₂ inventory (max injection rate 2700 t/hr ~24 Mtpa)
 - BC36 & BC40 performing better than expected (cf. CO2Stored database)

Derisking Southern sites

- The Southern sites unlikely to be able to accommodate the full baseload CO_2 inventory without further development of adjacent sites
 - Both Viking A and BC3 provide useful storage resource

Co-development of depleted and normally pressured reservoirs is more complex

Meeting the full storage demand

- Will need three structures for storage
- Performance of the three Bunter closures (36, 40 and 3) are very different from each other
 - Will need careful engineering design on rates and well placement

Derisking Norwegian site(s)

Structural de-risking at Smeaheia / Horda

Scoping simulations of 600 Mt of CO₂ storage

2300 W324_1

H21: Facilities concept

Facilities concept is focused on a sub-sea development (with shipping options)

- **UK solution:** 12 sub-sea wells drilled from 4 templates / 120 km pipe (26")
- Norway option: 6 sub-sea wells from 3 templates / 845 km pipe (32")

Open

Key messages

- Decarbonising Europe towards 2050 is a major challenge •
- Renewable solutions are perfect for the carbon-light sectors .
- Heavy industry, heat and flexible power generation require large-scale energy solutions
- Hydrogen from natural gas with permanent offshore storage of CO_2 offers: •

Low cost pathway Low technical risk Low carbon value chain

- Gas reforming is the most cost effective hydrogen pathway ٠
- Proven technology in H₂ production and CO₂ storage
- The CO₂ is returned to permanent offshore storage
- The industry has a track-record of mega projects

Can be integrated with Renewable Electricity supply and 'green hydrogen' feed-in

Open

Low Carbon Solutions

© Equinor ASA

This presentation, including the contents and arrangement of the contents of each individual page or the collection of the pages, is owned by Equinor. Copyright to all material including, but not limited to, written material, photographs, drawings, images, tables and data remains the property of Equinor. All rights reserved. Any other use, reproduction, translation, adaption, arrangement, alteration, distribution or storage of this presentation, in whole or in part, without the prior written permission of Equinor is prohibited. The information contained in this presentation may not be accurate, up to date or applicable to the circumstances of any particular case, despite our efforts. Equinor cannot accept any liability for any inaccuracies or omissions.