







#### EFFECT OF GEOCHEMICAL INTEGRITY OF BINDING CEMENT ON SANDSTONE PERMEABILITY AT CARBON STORAGE CONDITIONS

<u>Omid Shahrokhi</u>, Shima Ghanaatian, Amir Jahanbakhsh, Mercedes Maroto-Valer

10th TCCS, 19th June 2019, Trondheim



www.rccs.hw.ac.uk



#### Sandstone Reservoirs: Potential for CO<sub>2</sub> Storage?



AAPG Bulletin, v. 89, no. 4 (April 2005), pp. 435-445



#### Carbonated Water Injection: An Extreme Scenario



Mineral Dissolution  $\rightarrow \Delta P_l \searrow$ 



Sand Grain Mobilization  $\rightarrow \Delta P_l \nearrow$ 











#### **Experimental Procedure**





### Core Characterization

SEM Image Unaltered Berea Sandstone





250µm

| Initial Porosity | Initial Permeability | Mineralogy                                        | Length  | Diameter |
|------------------|----------------------|---------------------------------------------------|---------|----------|
| 12.5%            | 50mD                 | Sandstone with<br>Dolomitic and<br>Silica Cements | 30.48cm | 3.81cm   |





### **Brine Characterization**

| lon              | Concentration<br>(ppm) | pH Viscosity@<br>Condition |             | y@ Test<br>itions       |
|------------------|------------------------|----------------------------|-------------|-------------------------|
| Na+              | 8658                   | 5.98                       | 1.06 mPa.s  |                         |
| Ca <sup>2+</sup> | 382                    |                            |             |                         |
| Mg <sup>2+</sup> | 1205                   | P                          | st Conditio | ns<br>Injection<br>Rate |
| K+               | 580                    | 260 bars                   | 50°C        | 6cc/hr                  |





# Mineralogy

A: Unaltered Berea Sandstone

**B**: Core Inlet after Carbonated Water Injection **C**: Core Outlet after Carbonated Water Injection



SEM image of Core Inlet Sample after Carbonated Water Injection





### Presence of Dolomitic Cement in Sample A

SEM Image Unaltered Berea Sandstone



250µm

 SEM images and EDX maps indicate considerable amount of dolomitic cement distribution among sand grains.





Mg Kal 2





#### **Dissolution of Dolomitic Cement** at Core Inlet (Sample B)

SEM image of Core Inlet Sample after Carbonated Water Injection



- This cement was sparsely present out core inlet that came into contact with fresh carbonated brine.



Ca Kol 500un







#### Remaining Dolomitic Cement at Core Outlet (Sample C)

SEM Image of Core Oulet after Carbonated Water Injection



 At outlet a smaller proportion of this cement remained intact in isolated spaces where contact with carbonated brine was minimal.



Ca Kα1





# **Effluent Analysis**



- No significant change in Na<sup>+</sup> concentration.
- The change in Ca<sup>2+</sup> concentration: possibly related with calcite deposition at BPR upon exsolution of CO<sub>2</sub> (under investigation).
- Increase in Mg<sup>2+</sup> confirms dolomitic cement dissolution.
- More chemical weathering of K-feldspars are expected in lower pH levels, (further investigation required.).





### Permeability Measurement vs Time









## Conclusions and Limitations

- Ionic concentrations measured in atmospheric conditions. Back calculation via modelling is required.
- SEM analysis can be affected by mineral deposition at increased pH caused by exsolution of CO<sub>2</sub> from carbonated brine.
- The observed permeability evolution after sand production is more representative of near wellbore flow conditions.





## Further Investigations

- High Resolution µCT image analysis of the rock before and after contact with carbonated water injection.
- SEM analysis of produced sand grains and solid residues.
- Porosity measurement ( $\mu$ CT vs Helium).
- Geochemical modelling of the experiment to back calculate ion concentrations and pH at HPHT.





#### **Acknowledgements**



#### **European Research Council**

This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 Research and Innovation programme (MILEPOST, Grant agreement no.: 695070). This paper reflects only the authors' view and ERC is not responsible for any use that may be made of the information it contains.





#### **Thanks for your attention!**

www.rccs.hw.ac.uk



