

EFFECT OF GEOCHEMICAL INTEGRITY OF BINDING CEMENT ON SANDSTONE PERMEABILITY AT CARBON STORAGE CONDITIONS

<u>Omid Shahrokhi</u>, Shima Ghanaatian, Amir Jahanbakhsh, Mercedes Maroto-Valer

10th TCCS, 19th June 2019, Trondheim

www.rccs.hw.ac.uk

Sandstone Reservoirs: Potential for CO₂ Storage?

AAPG Bulletin, v. 89, no. 4 (April 2005), pp. 435-445

Carbonated Water Injection: An Extreme Scenario

Mineral Dissolution $\rightarrow \Delta P_l \searrow$

Sand Grain Mobilization $\rightarrow \Delta P_l \nearrow$

Experimental Procedure

Core Characterization

SEM Image Unaltered Berea Sandstone

250µm

Initial Porosity	Initial Permeability	Mineralogy	Length	Diameter
12.5%	50mD	Sandstone with Dolomitic and Silica Cements	30.48cm	3.81cm

Brine Characterization

lon	Concentration (ppm)	pH Viscosity@ Condition		y@ Test itions
Na+	8658	5.98	1.06 mPa.s	
Ca ²⁺	382			
Mg ²⁺	1205	P	st Conditio	ns Injection Rate
K+	580	260 bars	50°C	6cc/hr

Mineralogy

A: Unaltered Berea Sandstone

B: Core Inlet after Carbonated Water Injection **C**: Core Outlet after Carbonated Water Injection

SEM image of Core Inlet Sample after Carbonated Water Injection

Presence of Dolomitic Cement in Sample A

SEM Image Unaltered Berea Sandstone

250µm

 SEM images and EDX maps indicate considerable amount of dolomitic cement distribution among sand grains.

Mg Kal 2

Dissolution of Dolomitic Cement at Core Inlet (Sample B)

SEM image of Core Inlet Sample after Carbonated Water Injection

- This cement was sparsely present out core inlet that came into contact with fresh carbonated brine.

Ca Kol 500un

Remaining Dolomitic Cement at Core Outlet (Sample C)

SEM Image of Core Oulet after Carbonated Water Injection

 At outlet a smaller proportion of this cement remained intact in isolated spaces where contact with carbonated brine was minimal.

Ca Kα1

Effluent Analysis

- No significant change in Na⁺ concentration.
- The change in Ca²⁺ concentration: possibly related with calcite deposition at BPR upon exsolution of CO₂ (under investigation).
- Increase in Mg²⁺ confirms dolomitic cement dissolution.
- More chemical weathering of K-feldspars are expected in lower pH levels, (further investigation required.).

Permeability Measurement vs Time

Conclusions and Limitations

- Ionic concentrations measured in atmospheric conditions. Back calculation via modelling is required.
- SEM analysis can be affected by mineral deposition at increased pH caused by exsolution of CO₂ from carbonated brine.
- The observed permeability evolution after sand production is more representative of near wellbore flow conditions.

Further Investigations

- High Resolution µCT image analysis of the rock before and after contact with carbonated water injection.
- SEM analysis of produced sand grains and solid residues.
- Porosity measurement (μ CT vs Helium).
- Geochemical modelling of the experiment to back calculate ion concentrations and pH at HPHT.

Acknowledgements

European Research Council

This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 Research and Innovation programme (MILEPOST, Grant agreement no.: 695070). This paper reflects only the authors' view and ERC is not responsible for any use that may be made of the information it contains.

Thanks for your attention!

www.rccs.hw.ac.uk

