

Permeability reduction by salt precipitation

Aruoture Omekeh¹, Ying Guo¹ and Ingebret Fjelde^{1,2} · ¹NORCE, ²University of Stavenger · · ·

TCCS-10, Trondheim, 18-19th June 2019

Outline

- Introduction
- Estimate precipitation by simulations
- Flooding experiments to determine permeability reduction during CO₂-injection
 - Effect of formation water composition
 - Core orientation, i.e. displacement efficiency
- Conclusions and Future works

Introduction

CO₂ storage and Injectivity

- Salt precipitation
 - Formation water
 - Completion fluids
- Bacteria activity
- Fines migration
- Temperature and pressure cycling
- Hydrate formation

Snøhvit : BHP and flow-rate

Grude, S., M. Landrø, and J. Dvorkin. 2014. 'Pressure effects caused by CO2 injection in the Tubåen Fm., the Snøhvit field', *International Journal of Greenhouse Gas Control*, **27**: 178-87.

Factors affecting salt precipitation

- Formation water composition (+ T, P)
- Residual saturation from viscous displacement
 - Viscosity ratio (breakthrough $S_w = 0.45$ from Koval estimation)
 - Plug orientation
- Injection velocity
 - Uniform precipitation
 - Local precipitation
 - Front-face precipitation

Ott et al. / International Journal of Greenhouse Gas Control 43 (2015) 247– 255 TCCS 10 - 190619 - 4

Geochemical simulations PhreeqC

Maximum water content in CO₂ phase

Evaporation of water at test condition

Experiments: Linear Corefloods

- Measure initial CO₂ permeability
- Saturate core with FW and measure initial brine permeability
- Flow CO₂ to displace brine until core is 'dry'
 - Measure water production
 - Measure differential pressure
- Measure permeability of the dry core
- Analyse cores

Experimental Set-up

All HC steel tubing

Orientation core holder horizontal or vertical

Experiments

- Berea
 - Initial permeability 600 mD and porosity 22%
- Pressure 120 bar
- Temperature 50°C
- CO₂ injection rate
 - 5ml/min =7.2 liters/day

Experiment	Brine		Orientation	Position of separator	
1	FW	77K ppm	Horizontal	Room condition	
2	High Sal FW	120K ppm	Horizontal	Room condition	
3	High Sal FW	120K ppm	Vertical	Room condition	
4	High Sal FW	120K ppm	Vertical	Oven after core before back-pressure	

Brine compositions

	FW	High Salinity FW mg/L		
lon	mg/L			
Sodium	23364	40333*		
Potassium	658	658		
Calcium	4261	4261		
Magnesium	733	733		
Barium	483	483		
Strontium	382	382		
Chloride	46307	72961*		
Bromine	187	187		
Lithium	4	4		
Total PPM	77 220	120 000		

*NaCl added to make brine 120 000ppm

Experiment 1: FW Horizontal

- Water saturation from the liquid phase at the separator
- Water saturation from liquid and vapor (estimated at equilibrium conditions)

Experiment 2: HSFW Horizontal

Water Saturation

Differential Pressure profile

Initial and final perm after drying

Water saturation from the liquid phase at the separator

Water saturation with estimated (equilibrium conditions) vapour

Experiment 2: Core ends

Core Inlet after CO₂ Injection

Core Outlet after CO₂ Injection

Experiment 3: HSFW Vertical

Water Saturation Differential Pressure profile Initial and final perm after drying **Differential Pressure** perm (mD) 1 90 water saturation Initial water perm I Initial CO2 perm Final perm (supercritical CO2) 700 DP 80 Estimated with vapour 0.8 1.5 days shut -in 70 600 Water Saturation 60 0.6 Permeability (mD) 000 000 000 000 000 50 (Jaddm) q0 0.4 30 0.2 20 200 10 100 0 500 0 100 200 300 400 0 50 100 150 250 300 350 450 Pore Volume Injected 0 Pore Volume Injected

Water saturation from the liquid phase at the separator

Water saturation with estimated (equilibrium conditions) vapour

Experiment 3: Core ends

Core Inlet after CO₂ Injection

Core Outlet after CO₂ Injection

Experiment 4: HSFW Vertical

Water Saturation

Differential Pressure 1 water saturation 90 ٠ . . DP Estimated with vapour 80 0.8 • 1.4 days shut -in 70 60 Water Saturation 0.6 (Jack mbar) pp (120 mbar) 120 mbar) 0.4 30 20 0.2 10 0 0 0 50 100 150 200 250 300 350 400 450 100 200 300 400 500 0 Pore Volume Injected Pore Volume Injected

Differential Pressure profile

Initial and final perm after drying

Water saturation from the liquid phase at the separator

Water saturation with estimated (equilibrium conditions) vapour

Experiment 4: Core ends

Core Inlet after CO₂ Injection

Core Outlet after CO₂ Injection

Comparison core floods

0	1 A A						
0	50 100	150 200	250 30	0 350	400	450	
		Pore Volum	ne Injected				
Experiment	Brine	Orientation	Position	of separato	or		
1	FW	Horizontal	Room co	Room condition			
2	HSFW	Horizontal	Room co	Room condition			
3	HSFW	Vertical	Room co	Room condition			
4	HSFW	Vertical	In oven a	In oven after core			

Conclusions

- Permeability reduction observed in coreflood
 - Increases with formation water salinity
 - Depends on orientation, i.e. decreases with increasing displacement efficiency

Future works

- Analysis of the flooded cores
- Study more parameters
- Other rock types

Acknowledgement

We would like to acknowledge the Research Council of Norway (RCN) and our industry partners, Equinor, Shell, Total and Gassco for funding this work through the CLIMIT programme and our research partners SINTEF and University of Oslo.

H. Ott et al. / International Journal of Greenhouse Gas Control 43 (2015) 247–255 TCCS 10 - 190619 - 21

Factors that affect salt precipitation

- Injection velocity
 - Simulations with 45°C and 100 bars
 - 200k ppm salinity
- 5ml/min =7*10^-5 m/s (darcy velocity) for OUR experiments

Factors that affect salt precipitation

Injection velocity

- Uniform precipitation
- Local precipitation
- Front-face precipitation

H. Ott et al. / International Journal of Greenhouse Gas Control 43 (2015) 247–255 TCCS 10 - 190619 - 22