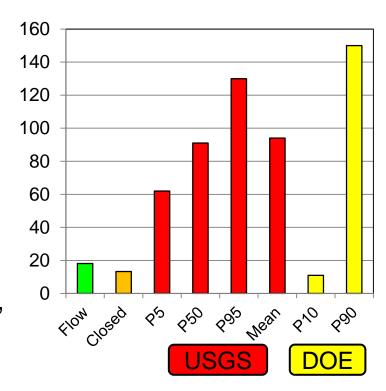


THE SRMS: SOLVING THE VOLUMETRIC VS DYNAMIC CO₂ STORAGE CAPACITY DILEMMA

TOTAL Views on the SRMS

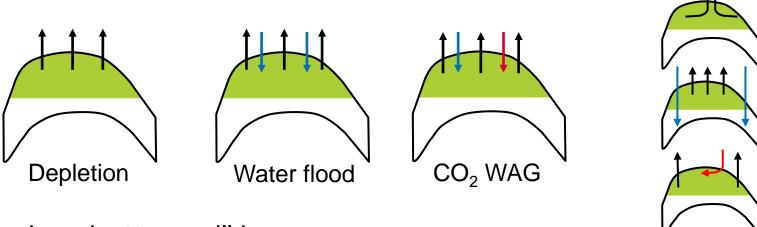

Sylvain Thibeau

Trondheim CCS-10 Conference – June 18-19 2019

THE CHALLENGE

- Volumetric estimates and flow simulation methods have been developped to estimate CO₂ storage resources in regional aquifers
 - Discussions on open vs closed aquifers
 - Large impact on CO₂ storage resources

- Mont Simon Sandstone example [1]
 - Volumetric estimates 11 150 Gt
 - Flow simulation 18 Gt
- Similar situation in UK, France, Norway, Canada, ...

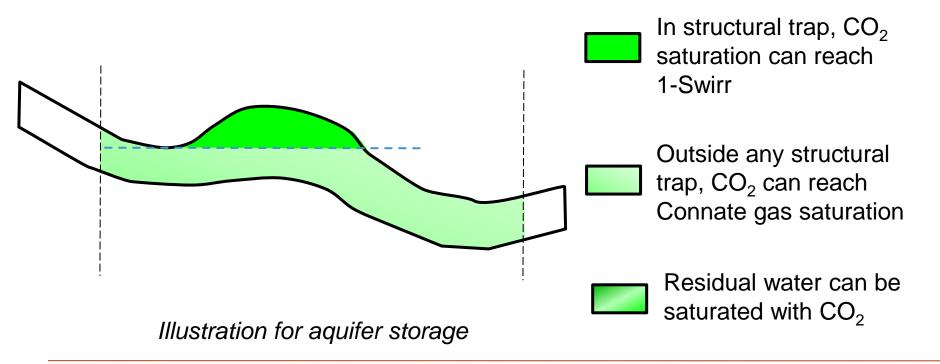


[1] Thibeau, Bachu, Birkholzer, Holloway, Neele, Zhou, Energy Procedia 63 (2014) 5294 – 5304

THE OIL & GAS APPROACH TO RESOURCE EVALUATIONS

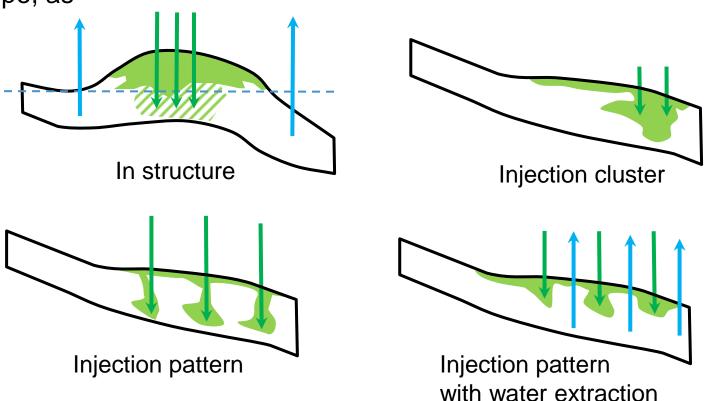
- Estimate the total resource and its range
 - Petroleum Initially In Place
 - Can be discovered or undiscovered
- Estimate which project type is appropriate to develop the resource

- Each project type will have
 - Specific recovery factors (and range)
 - Specific technico-economic characteristics (#producers; #injectors; water and gas management, well costs, ...)

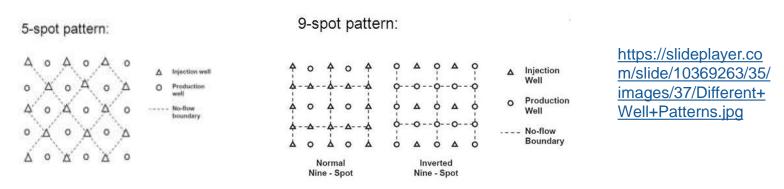

THE OIL & GAS APPROACH TO RESOURCE EVALUATIONS

- The recoverable volumes are largely dependent on the applied project
- Project choice is a technico-economic optimization, based on
 - Geological properties
 - Water management issues; CO₂ availability
 - Well costs
 - Onshore vs offshore
- The quantity relevant for project implementation is the recoverable quantity, not the Petroleum Initially In Place
- How are recovery factors evaluated?
 - Range derived from analogue historical developments
 - Range estimated from flow simulation
 - Remaining recoverable volumes estimated from production performance

IMPLICATIONS FOR CO₂ STORABLE QUANTITIES EVALUATIONS

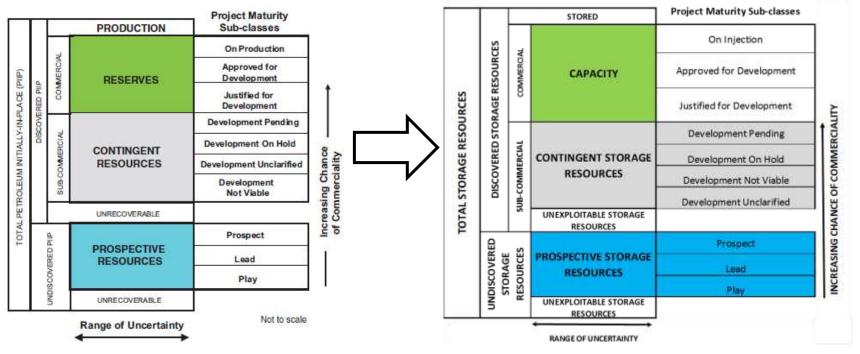

- Is there an analogue to the Petroleum Initially In Place?
- What is the maximum CO₂ quantity that could ever conceivable be stored in the formation?
- What about considering the various trapping mechanisms set to their maximum?

IMPLICATIONS FOR CO₂ STORABLE QUANTITIES EVALUATIONS


- If a storable quantity is the application of a project (or future project) on Total Storage Ressources, how to define a CO₂ storage project?
- Many possible settings depending on the Total Storage Resource type, as

IMPLICATIONS FOR CO₂ STORABLE QUANTITIES EVALUATIONS

- How to evaluate the range of storage efficiency of these projects?
 - Limited CO₂ storage analogues
 - Possibility to estimate storage coefficients for a pattern approach using flow simulation
 - Standard activity in the Oil & Gas industry
 - Requires no-flow boundary conditions to ensure a repeatable pattern
 - Valid for injection only (pressure controlled) or injection with brine extraction (CO₂ breakthrough management)

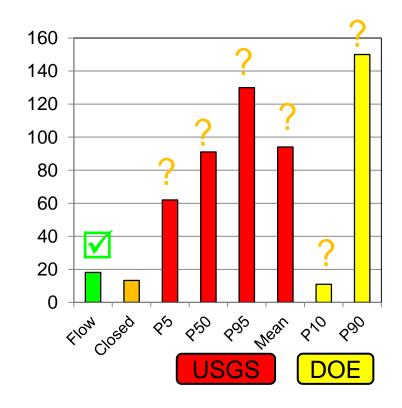


Flow simulation for injection clusters (with or without pressure management)

THE SRMS (STORAGE RESOURCE MANAGEMENT SYSTEM), A FRAMEWORK FOR RESOURCE REPORTING

- SRMS derived by SPE from the long-life SPE PRMS for oil and gas
- Two axis classification
 - Horizontal: uncertainty range
 - Vertical: Maturity classes

https://www.spe.org/industry/CO2-storage-resources-management-system.php


IMPLICATIONS FOR CCS COMMUNITY

- Evaluating storable quantities is required in order to ensure CO₂ storage can be implemented at scale of Climate Change
- Storables quantities
 - require the definition of project / project types
 - may be orders of magnitude lower than Total Storage Resources (practical impossibility to saturate all formation water or to fill all pore space to connate gas saturation)
- Storage coefficients are required to estimate storable quantities attached to a specific project type
 - Methods remain to be developped
 - Can be evaluated through flow modeling
 - Pattern approach can be used to simplify the flow modeling

RETURNING TO MOUNT SIMON SANDSTONE RESOURCE EVALUATIONS

- The flow modeling approach is a sound approach to evaluate storable quantities
 - Future project is defined, together with number of wells and possible locations, injection rates and duration
 - Resource is valid for an injection cluster approach; other project types could lead to other resource range
 - Uncertainty should be quantified in addition to a Base Case approach
- Volumetric approaches lack key informations to be labeled as storable quantities
 - No project type associated with resource estimation
 - Possible proxy for Total Storage Resources?

Thanks a lot for your attention

