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The feasibility of permanently storing CO,, has been
debated due to the potential that fault reactivation leads
to CO, leakage
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Despite its enormous cost, large-scale carbon capture and storage (CCS) is considered a viable strategy for significantly reducing CO, emissions

associated with coal-based electrical power generation and other industrial sources of CO, [Intergovernmental Panel on Climate Change

Geologic carbon storage is unlikely to trigger large
earthquakes and reactivate faults through which CO,
could leak
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It has been argued that induced seismicity will cause CO,
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CO, leakage may pollute aquifers and form geysers
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Geysers are formed if a CO,-rich aquifer is perforated

CO,-rich aquifer




GCS has only induced microseismicity to date.

Nonetheless, felt events have the potential to cancel
projectsl &g ,(AES Decatur (lllinois, USA)
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Most of the seismicity Is induced In the crystalline
basement, but CO, Is |njected IN overlylng sedlmentary

r%&%ewater disposal in the Central
and Eastern US is a clear example

Upper portion of fault
is not affected by slip -
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Faults incorporate clay as they accumulate slip,
forming a low-permeable fault core surrounded by

sand/clay
/ mixture
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Rock properties are measured in the laboratory

Advanced Triaxial cell Core flooding device
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CO, injection is performed under liquid (24 °C) Permits multiphase flow
and supercritical conditions (40 °C) measurements

Storage formation: Berea sandstone (intact and failed)
Caprock/Base rock: Opalinus clay (intact and restructured)

Basement: Charcoal granite . .
& Makhnenko et al. (2017) Energy Proc. Kim et al. (2018) Fluids



Sheared Opalinus clay maintains a low permeabillity
and high CO,, entry pressure
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The low-permeabillity of the fault leads to a high
pressure buildup If no pressure management Is

performed
/ Shale
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/, Reservoir
The reservoir is pressurized / (E=14 GPa)

between the injection
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There Is an inhomogeneous response of the stresses
to reservoir pressurization due to the stiffness
contrast
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While caprock stability is maintained, preventing the
risk of CO,, leakage, fault stability within the reservolir
decrealli s
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Fault instability Is confined within the pressurized
reservolr, so fault rupture will be arrested, limiting

I%Q@s@a%ﬁﬁ%an be improved by performing pressure management

(e.g., reducing pressure around fault by pumping water or with CO,-geothermal)

PR/ Fault stability
/ . R4l / changes are
P inhomogeneous
along the fault

The most critical zone is
placed in the damage zone
next to the aquifer




Induced microseismicity only causes local growth of
the damage zone due to large stress inhomogeneity

Induced microseismicity

Damage zone in the reservoir  /——Damage zone shale
becomes more fractured and (sealing, high entry pressure)
Shale grows laterally W (prevents fluid leakage)
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Induced microseisimicity occurs within the
lower portion of the reservoir damage zone




The CO, plume evolution Is affected by the presence
of the low-permeable fault, tending to migrate away

fr0ﬁ¢(b§ may reach faults at Gt-scale storage, but the high CO, entry

pressure will prevent CO, leakage
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Geologic carbon storage remains a safe option

Potential fault rupture will arrest
because of the induced
inhomogeneous stress changes
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Questions?
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