

WWW.

Review of current and emerging CO₂ capture technologies

Ashleigh Cousins¹, Paul HM Feron², Jenny Hayward², Kaiqi Jiang², Rongrong Zhai³, Graeme Puxty², <u>Monica Garcia⁴</u>

¹ CSIRO Energy, Brisbane, QLD, Australia
² CSIRO Energy, Newcastle, NSW, Australia
³ North China Electric Power University, Beijing, China
⁴ IEAGHG, Pure Offices, Hatherley Lane, Cheltenham GL51 6SH, UK

TCCS-10, June 18-19th 2019, Trondheim (Norway)

Views, findings and publications of the IEAGHG do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

Who are we?

Our internationally recognised name is the IEA Greenhouse Gas R&D Programme (IEAGHG). We are a Technology Collaboration Programme (TCP) and are a part of the International Energy Agency's (IEA's) Energy Technology Network.

<u>Disclaimer</u>

The IEA Greenhouse Gas R&D Programme (IEAGHG) is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publications of the IEA Greenhouse Gas R&D Programme do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

Powering. Reliable. Future.

IEAGHG study-What is it about?

- To review carbon capture technologies and their development <u>status</u>;
- To update the CO₂ capture <u>benchmark</u> technology (NOT IN THIS PRESENTATION)
- To draw up a list of <u>promising technologies</u> expected to reach commercial status within the next 10 years
- To identify the potential <u>risks and barriers</u> for those technologies to reach commercial deployment
- To provide a list of conclusions and recommended areas for <u>future research</u>.

Background

ASSESSMENT OF EMERGING CO₂ CAPTURE TECHNOLOGIES AND THEIR POTENTIAL TO REDUCE COSTS

Report: 2014/TR4 December 2014 This report is from 2014. Conclusions: chemical absorption

Since this report:

- New technologies have emerged since 2014
- New testing campaigns have taken place since 2014, other technologies are not interesting any more, ...
- Comparisons should be done with an updated benchmark

Interpretation of results

- Next tables will show a comparison of TRL estimated in this report and showed in IEAGHG (2014)
- Arrows are used to indicate the development trajectory of the technology, as follows:
- An upwards arrow indicates that the technology has commercial backing, and that larger-scale evaluation or demonstration of the technology is either current or planned.

Interpretation of results

- A sideways arrow indicates that while there may be ongoing pilot-scale demonstration of the technology, there are either no current plans for further larger-scale demonstrations, or the technology is not being progressed by a commercial partner.
- A downwards arrow indicates that while some pilot or laboratory-scale evaluation has occurred, current research is at a lower scale than previously.

Task 1 – Post-combustion

TECHNOLOGY		TRL AT PREVIOUS REVIEW	CURRENT TRL	CURRENT DEVELOPMENT TRAJECTORY	PREDICTED DECREASE STANDARD TEC
iquid absorbents.	Aqueous amine	6–9	6–9	\rightarrow	Low
	Amino acid and other mixed salts	-	6	\uparrow	Low
	Ionic liquids	1	4	\checkmark	-
	Encapsulated absorbents	1	2–3	\rightarrow	-
	Water-lean absorbents	-	5	\bigcirc	Medium
	Precipitating	4–5	4–6	\rightarrow	Medium
	Liquid-liquid separating	4	4–5	\uparrow	Low
	Catalysts	1	6	\uparrow	Medium
Лembranes	Polymeric membranes	6	6	\uparrow	Low
	Membrane contactors	-	5–6	\rightarrow	Medium
	Hybrid processes	6	6	\bigcirc	Medium
olid sorbents	Pressure-swing adsorption (PSA) and temperature-PSA	3	6	÷	Medium
	Temperature swing adsorption	1	6	\uparrow	Medium
	Ca looping	6	6	\rightarrow	Medium
Cooling and liquefaction		3	5	\rightarrow	Medium
Electrochemical separation		1	4	\uparrow	High
Algae-based capture		1	4	\checkmark	-
Direct air capture		_	5	\rightarrow	_

The highest evolution in the power sector is observed in postcombustion technologies.

Aqueous amine solutions for chemical absorption are still leading the CO_2 capture technologies but others show significant evolution since 2014

Task 1 – Oxyfuel

ECHNOLOGY	TRL AT PREVIOUS REVIEW	CURRENT TRL	CURRENT DEVELOPMENT TRAJECTORY	PREDICTED LCOE D C.F. STANDARD TEC
Pressurised oxyfuel combustion	-	5	\rightarrow	Medium
Dxyfuel gas turbines	2–5	2–5	\bigcirc	Low
ligh-temperature air-separation membranes	4–7	4–7	\rightarrow	Low
Chemical-looping combustion	2	4–5	\rightarrow	Medium

It is expected some development on oxyfuel turbines If ECRA project is funded, it will mean reaching TRL 7 for the industrial sector Allam Cycle

Task 1- Pre-combustion

ECHNOLOGY	TRL AT PREVIOUS REVIEW	CURRENT TRL	CURRENT DEVELOPMENT TRAJECTORY	PREDICTED LCOE D C.F. STANDARD TEC
H_2 separation membranes	5	5–6	\rightarrow	Low
O_2 separation membranes	5	5–6	\rightarrow	Low
olid sorbents	_	5	\rightarrow	Low
Chemical liquid absorbents	_	5	\rightarrow	Low
orption-enhanced water-gas shift	5	4–6	\rightarrow	Medium
Clathrates	_	4	\rightarrow	Low

There has not been much development in this area New physical solvents could emerge

Techno-economic method: The devil is in the details!

- IEAGHG Techno-economic criteria (support slides)
- Techno-economic scenarios (support slides)

Task 3 - Cost assessment-Gas Fired power plants

Figure 1 **Comparison of levelised cost of electricity (LCOE) of gas-fired technologies** CCS = carbon capture and storage; MEA = monoethanolamine; PZ/AMP = piperazine/amino-methyl-propanol

Task 3 - Coal fired power plants

Lowest cost showed by the new benchmark solution (chemical absorption)

BUT under specific conditons, others such as MEA, Veloxotherm, DMX or Ca-looping can be just slightly more expensive (perhaps under the limitations of this assessment)

Figure 2 Comparison of levelised cost of electricity (LCOE) of coal-fired technologies

CCS = carbon capture and storage; DMX = proprietary process developed at French Petroleum Institute Energies Nouvelles; MEA = monoethanolamine; PZ/AMP = piperazine/amino-methyl-propanol

Conclusions

➤ CO₂ capture technologies are advancing. However, the next generation will be probably still based on traditional chemical absorption due to its maturity (low risk). New technologies will take some time to reach the development status of chemical absorption but they are still on the loop

Conclusions

The techno-economic assessment is still limited due to different TRLs. Other factors different than costs must be taken into account

Deployment: More large-demonstrations are needed

This report will be available for the IEAGHG members soon

Ask me for more information! monica.garcia@ieaghg.org

Supporting slides

IEAGHG Techno-economic

criteria

Total plant cost (TPC)	
Installed costs	Equipment costs + material costs + labour costs
Engineering contractor's fees	10% of installed costs
Project contingency	10% of (installed costs + engineering contractor's fee)
Process contingency (only for carbon capture and storage)	16% of (installed costs + engineering contractor's fee)
Total capital requirement	
Owners costs and fees	7% of TPC
Spare parts	0.5% of TPC
Start-up costs	
Maintenance, operating and support labour costs	3 months
Maintenance materials	1 month
Chemicals, consumables and waste disposal costs	1 month
Fuel cost	25% of 1 month
Modifications	2% of TPC
Construction time	
Pulverised coal and natural gas plants	3 years
Capital expenditure schedule	
Pulverised coal and natural gas plants	20%/45%/35% of TPC, year 1–3
Capacity factor	
All except year 1	85% (7446 h)
Year 1	50% (4380 h)
Discount rate	
Plant construction and operation	8%
Operating life	
Base case	25 years
Fuel prices	
Coal	2.5 €/GJ
Natural gas	5.0 €/GJ
Fixed operating costs	
Maintenance costs	
PC plant	1.5% of TPC/year
NGCC	2.2% of TPC/year
Maintenance materials	60% of maintenance costs
Maintenance labour	40% of maintenance costs
Operating labour cost	60 k€/person-year
Number of operators	
Pulverised coal plant	16
Pulverised coal + CO ₂ capture	18
Natural gas combined-cycle plant	6

Sensitivity analysis scenarios

CRITERIA	BASE CASE	SENSITIVITY 1	SENSITIVITY 2
Coal price, €/GJ (LHV)	2.5	1	4
Natural-gas price, €/GJ (LHV)	6	3	12
Discount rate, %	8	5	10
Plant life, years	25	40	25
CO₂ transport and storage cost, €/tCO₂ stored	10	0	20

