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Bipolar Membrane Electrodialysis Process 

CO2(𝑎𝑞) + 2KOH(𝑎𝑞) ⇌ H2O + K2CO3(𝑎𝑞) 

Air Contactor 

H2CO3(𝑎𝑞) ⇌ CO2(𝑔) + H2O(𝑙) 

Tank 

CO2(𝑎𝑞) + KOH(𝑎𝑞) ⇌ KHCO3(𝑎𝑞) 

Air IN 

 

Air OUT 

 

K2CO3 (𝑎𝑞) + 2H+ + 2OH− ⇌ 2KOH(𝑎𝑞) + H2CO3(𝑎𝑞) 

BPMED Stack 
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• BPM splits water 
after a threshold 
potential is reached; 

 

 

• Anions diffuse 
trough AEM to the 
Acid compartment; 
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Air Contactor 

• Designed by Carbon Engineering, 
pilot contactor in operation; 

• Based on commercial cooling 
tower technology; 

• Open, cross-flow configuration; 

• Modular design; 

• A factor 4 less expensive than 
conventional absorption towers 
[1]; 

 
[1]An air-liquid contactor for large-scale capture of CO2 from 
air, Keith et al. (2011) 

K2CO3 

KHCO3 

 

KOH 

 

Air IN 
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BPMED Stack Model (I) 

BPM AEM BPM 

Base Acid 

𝛿 

CEM CEM 

𝐽𝐶𝑂2
=

𝑖

𝐹
𝜂 𝑅𝑐𝑒𝑙𝑙 = 𝑅𝑏𝑎𝑠𝑒 + 𝑅𝐴𝐸𝑀 + 𝑅𝑎𝑐𝑖𝑑  

𝑅𝑖 = 
𝛿

𝑘𝑖
 

Resistance (Ωm2) 

𝜂 =
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐶𝑂2 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑐𝑕𝑎𝑟𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑑
 

Electrical efficiency 

𝑘𝑏𝑎𝑠𝑒 = 𝑓  𝐽CO2
 

• Steady-state, 0D model; 

• Base compartment is assumed to be 
comprised of two phases: base 
solution and gaseous CO2; 

• Main equations reported below: 

 Specific Energy Demand (kJ/molCO2) 

CO2 Production Rate (molCO2/s) 

𝑆𝑃𝐸𝑁𝐷 =
𝑁𝑆𝑇𝐴𝐶𝐾𝐹

𝜂
𝑁𝐶𝐸𝐿𝐿 𝑖𝑅𝐶𝐸𝐿𝐿 + 𝐸𝐵𝑃 + 𝐸𝐸𝐶  



• Values of η published in 
literature for different Rich 
compositions [2]; 

• η increases with i until a plateau 
value is reached; 

• The experimental points have 
been fitted with the following 
equation: 
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BPMED Stack Model (II) 

[2]CO2 separation using bipolar membrane electrodialysis, Eisaman et al. (2011) 

𝜂 =
𝜂𝑚𝑎𝑥𝑘𝑖1/𝑚

1 + 𝑘𝑖1/𝑚
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Air Contactor Model 
• Parallel blocks to simulate 

cross-flow; 

• Detailed, rate-based units; 

• Parameters used are reported 
in the Table below: 

 Description Value [3] 

Block RadFrac 

Thermodynamic model ELECNRTL 

Inlet Area [m2] 25 

Width [m] 7 

Number of Units 6 

Packing Sulzer Mellapak 250.Y 

Flow model  VPlug 

[3]A Process for Capturing CO2 from the Atmosphere, Keith 
et al. (2018) 
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Model Validation (I) 
𝑱𝑪𝑶𝟐

=
𝒊

𝑭
𝜼 

1. Fitting Electrical 
Efficiency. 

2. Calculation of CO2 
Production Rate. 

3. Calculation of 
Specific Energy 
Demand. 

 

𝑺𝑷𝑬𝑵𝑫 =
𝑁𝑆𝑇𝐴𝐶𝐾𝐹

𝜂(𝑖)
 𝑁𝐶𝐸𝐿𝐿 𝑖𝑅𝐶𝐸𝐿𝐿 + 𝐸𝐵𝑃

+ 𝐸𝐸𝐶  
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Model Validation (II) 
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Air Contactor Operating Conditions (I) 

• The presence of KOH has a great 
impact on the Electrical Efficiency, 
due to competitive transport of OH-. 

• This, in turn, determines a 
considerable increase in the Specific 
Energy Demand. 
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Air Contactor Operating Conditions (II) • KOH concentration affects 
both CO2 capture and sorbent 
regeneration; 

• To assess its effect on the 
performance of the process, 
these indicators will be used: 

R =
𝐹K2CO3

𝑅𝐼𝐶𝐻 + 𝐹KHCO3

𝑅𝐼𝐶𝐻

𝐹KOH
𝑅𝐼𝐶𝐻  

Absorber Load =
𝐹KOH

𝐿𝐸𝐴𝑁

𝐹CO2

𝐼𝑁  

𝑭𝑲𝑶𝑯
𝑳𝑬𝑨𝑵 

𝑭𝐂𝐎𝟐

𝑰𝑵  

𝑭𝐊𝐎𝐇
𝑹𝑰𝑪𝑯 

𝑭𝐊𝟐𝐂𝐎𝟑

𝑹𝑰𝑪𝑯  

𝑭𝑲𝐇𝐂𝐎𝟑

𝑹𝑰𝑪𝑯  

CO2 Recovery =
𝐹CO2

𝐼𝑁 + 𝐹CO2

𝑂𝑈𝑇

𝐹CO2

𝐼𝑁  

𝑭𝐂𝐎𝟐

𝑶𝑼𝑻 

Air IN 

 

Air OUT 
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Air Contactor Operating Conditions (III) 

• Based on experimental data, we 
assume that for R > 50 the influence 
of KOH on BPMED is negligible; 

• CO2 capture is favored at high 
Absorber Loads; 

• On the other hand, sufficient values 
of R  are only achieved with diluted 
Lean solutions; 

• A greater number of Air Contactor 
units is required, thus increasing 
capture costs. 
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Air Contactor Operating Conditions (III) 

• Compared to CE, roughly 1.7 times 
more Air Contactor units are needed; 

• We will assume that η lies in the range 
of 40% - 50%. 

Lean 

Rich 

Component Concentration (mol/L) 

KOH 0.3 

K2CO3 0 

KHCO3 0 

Component Concentration (mol/L) 

KOH 0.0032 

K2CO3 0.17 

KHCO3 0.002 

Parameter Value 

L/G 0.05 

CO2 Recovery (%) 50 

Number of Units 2720 
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Base Case (I) • DAC plant with capacity of 1 
MtonCO2/year; 

• Calculation of required number of Air 
Contactor units and BPMED stacks 
and estimation of total costs; 

• Base Case assumptions are reported 
in the Table below: 

Parameter Value [4],[5] 

Ncells 2400 

Amembrane [m
2] 1.785 

𝜹 [mm] 1.5 

RAEM [Ωm2] 0.00041 

Membrane Lifetime [yr] 5 

Cost Value [6] 

Electricity [$/kWh] 0.06 

Stack [M$/unit] 0.75 

AEM [$/m2] 70 

BPM [$/m2] 750 

[4]SELEMION Products Catalogue 
[5] ASTOM Products Catalogue 
[6] Carbon dioxide recovery from carbonate solutions using 
bipolar membrane electrodialysis, Iizuka et al. (2012). 
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Base Case (II)  

𝐽𝐶𝑂2
=

𝑖

𝐹
𝜂 

iopt 

• With increasing i, less 
BPMED stacks are 
needed, therefore CAPEX 
decreases.  

• Voltage drop across the 
stack increases with i 
and with it the OPEX. 

• Optimal operating 
conditions are 
identified. 

𝑺𝑷𝑬𝑵𝑫 =
𝑁𝑆𝑇𝐴𝐶𝐾𝐹

𝜂(𝑖)
 𝑁𝐶𝐸𝐿𝐿(𝑖𝑅𝐶𝐸𝐿𝐿

+ 𝐸𝐵𝑃) + 𝐸𝐸𝐶  
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Base Case (III)  

Air Contactor 

Membranes 

Stacks 

Pump and Compressor 

Membrane 

Replacement 
Energy 

Consumption  

BPMED 

Ventilation and CO2 Compression 

[3]A Process for Capturing CO2 from the Atmosphere, Keith et al. (2018) 
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Sensitivity Analysis (I) 

• Conventional CE Process (CE-A) is more cost effective in every condition; 

• In order for the BPMED process to become the better option, cheap renewable energy and a 
reduction in membrane cost is needed; 
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Sensitivity Analysis (II) 

• We assume lowest cost for the membrane to 
assess if BPMED process could ever be 
competitive; 

• Alternative CE process (CE-C) is also considered. 
In this process part of the energy input is 
provided in the form of electricity[6]; 

• Assumptions are reported in the table below: 

 Cost Value 

Stack [M$/unit] 0.25 

AEM [$/m2] 15 

BPM [$/m2] 75 

[6]A Process for Capturing CO2 from the Atmosphere, Keith et al. (2018) 
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Conclusions 

• BPMED model provided an adequate description of the performances of a lab-scale setup 
through implementation of experimentally measured efficiency; 

• A fine tuning of Air Contactor operating conditions is needed to make sure an acceptable 
efficiency is achieved for BPMED; 

• With the current electricity and membranes cost, BPMED process cannot compete against CE 
process; 

• BPMED process is very energy-intensive. Cheap, renewable electricity is a fundamental 
requirement for this process; 

• Other DAC processes would also benefit from low energy cost. From our results, it seems 
unlikely that the BPMED process will ever be the most cost effective. 
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Direct Air Capture 

• DAC is a process for separating CO2 from 
atmospheric air; 

• Huge volumes of air must be processed to 
capture a meaningful amount of CO2; 

• Physical separation processes are out of 
the question, leaving absorption and 
adsorption; 

• Air and sorbent should be put in contact in 
the most efficient way; 

 𝟏 
𝐌𝐭𝐨𝐧𝐂𝐎𝟐

𝐲𝐞𝐚𝐫  

𝟒𝟔𝟎𝟎𝟎 
𝐦𝐀𝐢𝐫

𝟑

𝐬  
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Carbon Engineering’s DAC Process 

• Regeneration of sorbent 
carried out through Ca-based 
thermochemical cycle; 

• Natural gas is required; 

• CE estimates that CO2 
captured through this process 
would cost 232 $/ton [1]; 

• CE is also developing other 
process based on the same Air 
Contactor. 

 [1]A Process for Capturing CO2 from the Atmosphere, 
Keith et al. (2018) 



• The conductivity of the base compartment 
accounts for gaseous CO2: 

 

 

• Where: 

 

 

• CO2 bubbles are assumed to be spherical and 
randomly packed. 
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Effect of CO2 Bubbles 

AEM BPM 

𝑘𝑐𝑜𝑟𝑟

𝑘𝑏𝑎𝑠𝑒
= 

1 + 𝐴𝐵𝜑𝐶𝑂2

1 − 𝐵𝛾𝜑𝐶𝑂2
 

The Thermal and Electrical Conductivity of Two-Phase Systems, Nielsen et al. (1974) 

Base  
Compartment 

𝜑𝐶𝑂2 = 
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑔𝑎𝑠 CO2

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
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Economic Analysis 

• The process performance has been 
assessed with the Capture Cost ($/tonCO2): 

 

 

• Where TOC is the Total Overnight Cost and 
CCF is Capital Charge rate Factor. 

 

Parameter Value 

CCF 0.125 

Bare Erected Cost (BEC) [Calculated for 
all the units] 

Total Installation Cost (TIC) 80% BEC 

Total Direct Plant Cost (TDPC) BEC + TIC 

Indirect Cost (IC) 13% TDPC 

Engineering, Procurement and 
Construction (EPC) 

TDPC + IC 
 

Contingency & Other (C&O) 30% EPC 

Total Overnight Cost (TOC) EPC + C&O 

𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝐶𝑜𝑠𝑡 =
TOC ∙ CCF + CO&M

fix + CO&M
var ∙ heq

FCO2

BPMED ∙ heq
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Effect of Composition 

• Rich solution composition has multiple effects 
on the regeneration process; 

• Diluted solutions are more expensive to 
regenerate because of lower CO2 production 
rate and higher electrical resistance; 

• KOH is both an indispensable element and the 
biggest obstacle to the efficient operation of 
this process; 

• Further development of membrane technology, 
allowing for selective transport of ions, would 
tremendously benefit the BPMED process; 
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