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Why CCS is important? 

• For global average temperature increases to not exceed pre-industrial levels by more 

than 2°C, then global carbon dioxide emissions must be reduced by at least 50 – 85 

% by 2050.  

• This requires the application of all available low-carbon technologies and negative 

emissions at a scale and rate far greater than current efforts (Paris Agreement: “net-

zero GHG emissions in the second half of the century”).  

• Next 40 years the world population will increase from 7 to 9 billion people 

• By 2030 the energy demand may increase by 50% 

• Today fossil fuel provides 80% of energy need. In 2040, 44% of energy will still need 

to come from fossil fuels (IEA’s 2˚C  scenario).  

• CCS can capture 90% of emissions from power, heavy industry and petrochemicals 

(50% of global CO2) 
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Introduction 

• Increase in fossil fuel consumption – CO2 concentration 

rising 

• Development of new energy utilization technologies and 

new energy carriers 

• Hydrogen is a clean and green fuel with high energy 

density 

• Future hydrogen demand 

– More strict environmental standards 

– Applications in automobiles and fuel cells 

– Use as an energy storage medium for renewable 

energy sources 

 

CO2 concentration 

Source: Linde Engineering 

Hydrogen Consumers 

Source: IPCC 
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Membrane-assisted chemical looping 

reforming 
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Membrane-assisted autothermal 

reforming (MA-ATR) 
• Challenges with MA-CLR include steady oxygen carrier 

circulation under high pressures (≥ 50 bar) 

• High pressures maximize hydrogen permeation flux and 

minimize the required membrane surface area 

• MA-ATR consists of single reactor without solids circulation 

• Oxygen carrier is oxidized above the membranes with high 

purity oxygen 

• Role of oxygen carrier is to ensure complete conversion of 

fuel that slips past the membranes 

• Transport the produced heat down to the membrane region 

to drive the reforming reaction 

• Gentle bubbling fluidized bed reactor in MA-ATR will have 

much lower particle attrition and elutriation 
Illustration of MA-ATR concept 
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Membrane-assisted autothermal 

reforming with air separation unit 
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Chemical looping air separation (CLAS) 

• Air separation method relies on chemical 
looping principle similar to chemical looping 
combustion 

• Two step redox reactions by circulating metal 
oxide particles between two connected 
reactors 

• CLAS incorporates concept of oxygen 
decoupling into a two-step redox reaction 
mechanism 

• Oxygen decoupling occurs in the presence of 
steam 

• Product oxygen can be compressed for 
storage or directly fed to another process 

 

 

Schematic of chemical 

looping air separation 
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MA-ATR integrated with CLAS 
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Process modeling assumptions 

• A simple 0D mass and energy balance model was used to 
describe the reactor behaviour for coupling to the process 
simulations 

• Steam-to-carbon ratio of 1.75 is assumed 

• Reactor is operated at 50 bar while the H2 is permeated at 2 
bar 

• Reforming occurs at a temperature of 700 °C 

• Oxygen purity – 96% 

• Final H2 conditions – 30 °C and 150 bar 

• Final CO2 conditions - 30 °C and 110 bar 
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Plant performance 
NG flow rate kg/s 3.55 

H2 mass flow rate kg/s 1.31 

O2 compression MWel -4.96 

H2 compression MWel -10.83 

CO2 compression MWel -0.30 

Pumps MWel -0.39 

Net electric power MWel -16.48 

Steam export (160°C, 3bar) kg/s 2.30 

H2 production efficiency, ηH2 H2,LHV/NGLHV 0.95 

Equivalent NG input, mNG,eq kg/s 5.24 

Eq. H2 production efficiency, ηH2,eq H2,LHV/NGeq, LHV 0.644 

Equivalent CO2 avoided % 82.71 

H2 production efficiency 

Equivalent H2 production efficiency 
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Economic assumptions 

• Installed cost of the components from Aspen are considered as bare erected costs 

• All bare module costs are adjusted for inflation to the year 2019 by a CEPCI factor 

• Reactor costs are estimated by assuming that the reactor is composed of two process 
vessels: a thick outer pressure shell and a inner reactor vessel separated by an insulation 
material 

• Membrane costs are taken as $1000 /ft2 

• Cost of NiO is $15 /kg and Mn2O3 is $2 /kg 

• Natural gas price considered is € 9.15 /GJ 

• Electricity price considered is € 76.36 /MWh 

• Discount rate of 10% is assumed 

• Capacity of 85% with lifetime of 25 years 

• CO2 T&S = €11 /ton-CO2 

Bare erected cost Installed cost 

EPC contractor services 10% of BEC 

Engineering, procurement and construction cost 

Process contingency 40% of BEC 

Project contingency 15% of (BEC+EPCC+PC) 

Total plant cost BEC + EPCC + Contingencies 

Owners cost 20% of TPC 

Total overnight cost TPC + Owners cost 

Total capital requirement 1.14*TOC 

Capital cost estimation 
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Economic assessment 

MA-ATR reactor cost 

Air reactor 0.94 

Reduction reactor 0.98 

Combustor 1.13 

Desulphurizer 0.49 

Pre-reformer 4.86 

Pumps 0.71 

H2 compressor 11.11 

CO2 compressor 1.82 

CO2 Flash 0.21 

Air/O2 compressor 4.14 

Heat exchangers 17.63 

Coolers 1.17 

Cooling tower 0.79 

Reactor 2.55 

Membrane 15.43 

Contingency and fees 11.51 

Bare module cost 63.95 

Total capital requirement 154.93 

Fixed costs 

Capital 17.1 M€/year 

O&M 7 M€/year 

Labour 1.5 M€/year 

Variable costs 

Oxygen carrier 0.08 M€/year 

OR OC cost 0.02 M€/year 

RR OC cost 0.02 M€/year 

Membranes 1.54 M€/year 

Cooling water 0.18 M€/year 

Process water 0.14 M€/year 

Natural gas 54.22 M€/year 

Steam export -0.11 M€/year 

Electricity 9.92 M€/year 

CO2 T&S 3.73 M€/year 

H2 production 35.12 Mkg/year 

Total annual cost 94.73 M€/year 

H2 cost 2.7 €/kg 

Capital cost breakdown (M€) Overall costs breakdown 

H2 cost breakdown 
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H2 cost comparison 

**Spallina, V., Pandolfo, D., Battistella, A., Romano, M. C., Annaland, M. V. S., & 

Gallucci, F. (2016). Techno-economic assessment of membrane assisted 

fluidized bed reactors for pure H2 production with CO2 capture. Energy 

conversion and management, 120, 257-273. 

*Cloete, S., Khan, M. N., & Amini, S. (2019). Economic assessment of 

membrane-assisted autothermal reforming for cost effective hydrogen production 
with CO2 capture. International Journal of Hydrogen Energy, 44(7), 3492-3510. 

Eq. H2 efficiency (%) Cost (€/kg) 

**Steam methane reforming 81 2.58 

**Steam methane reforming with MDEA 67 3.37 

**Fluidized bed membrane reactor 76 2.63 

**Membrane assisted chemical looping reforming 82 2.29 

**Membrane assisted autothermal reforming with CLAS 64.4 2.7 

Assumptions: Fuel - €6 /GJ; Electricity - €60 /MWh; Capacity factor = 0.9 

MA-ATR (ASU) MA-ATR (CLAS) 

Power consumption (MWel) 11.31 16.48 

Major CAPEX component (M€) ASU – 17.5 HX – 17.63 

Annualized capital cost (M€/year) 8.64 8.3 

Natural gas (M€/year) 20.77 37.65 

Total annual cost (M€/year) 42.59 68.05 

Hydrogen production (Mkg/year) 27.23 37.19 

Cost components 
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Conclusions 

• A techno-economic assessment of a membrane-assisted autothermal reforming plant integrated with 
chemical looping air separation is conducted 

• H2 production efficiency of 95% is observed 

• Equivalent H2 production efficiency of 64.4% is observed 

• Cost of H2 production is estimated as €2.7 /kg which is higher than steam-methane reforming without 
capture (€2.58 /kg) 

• Compared to MA-CLR and MA-ATR ASU, the cost of H2 production is 16.3% and 14.5% more, 
respectively 

• Future work should focus on testing the long-term performance and reliability of membranes under 
industrially relevant pressures and temperatures 

• Actual and operating partial pressures of oxygen and the operation temperature are the major controlling 
parameters 

• Heat management in CLAS is the main challenge 
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