gti

Hydrogen Production with Integrated CO₂ Capture

TCCS-10 June 2019

> Contact: Markus Lesemann mlesemann@gti.energy

78-year History of Turning Raw Technology into Practical Energy Solutions

Product Summary: Hydrogen Production with CO₂ Capture

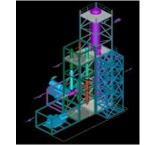
Product

- System for large-scale H₂ production from natural gas
- Replaces Steam Methane reformer

Benefits

- Steam Neutral
- Substantially lower equipment costs compared to SMR
- Increased H₂ efficiency
- Concentrated CO₂ byproduct

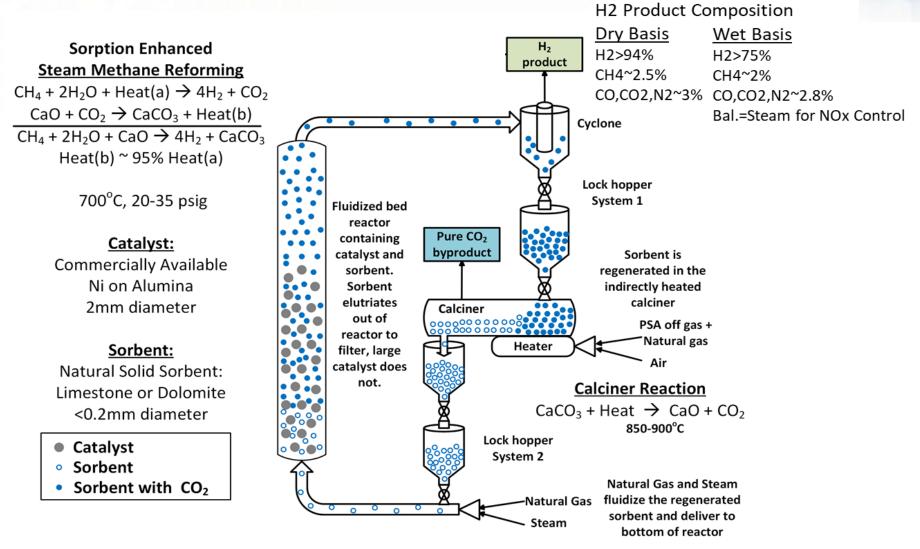
Markets


- H₂ for refineries, bio-refineries and chemicals
- Hydrogen for distribution through pipeline infrastructure
- Power Generation

Status

- Initial pilot test completed.
- Pilot system modification underway for extended testing.
- Demo plant defined at 5.0 MMSCFD (2-20 Feasible)

Current Technology Hydrogen Generator



Demo Plant

Pilot Plant

Process Schematic

Process Development

> GTI has performed a systematic development of the CHG process, demonstrating each of the key system elements. This has culminated in a pilot plant which is operational and currently being tested.

Flash Calciner Tests

Demonstrated operation

Validated calcination

rate models.

Fixed Bed Tests

Demonstrated chemistry with commercial catalyst for wide range of operating conditions.

Cold Flow Tests

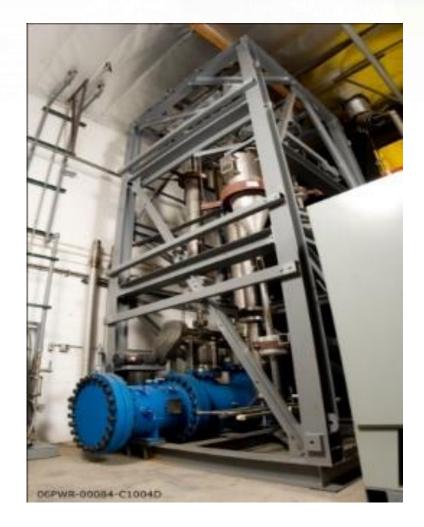
Defined component designs, demonstrated solids handling under wide range of operating conditions.

Design Data and Operating Experience

20 MSCFD Pilot

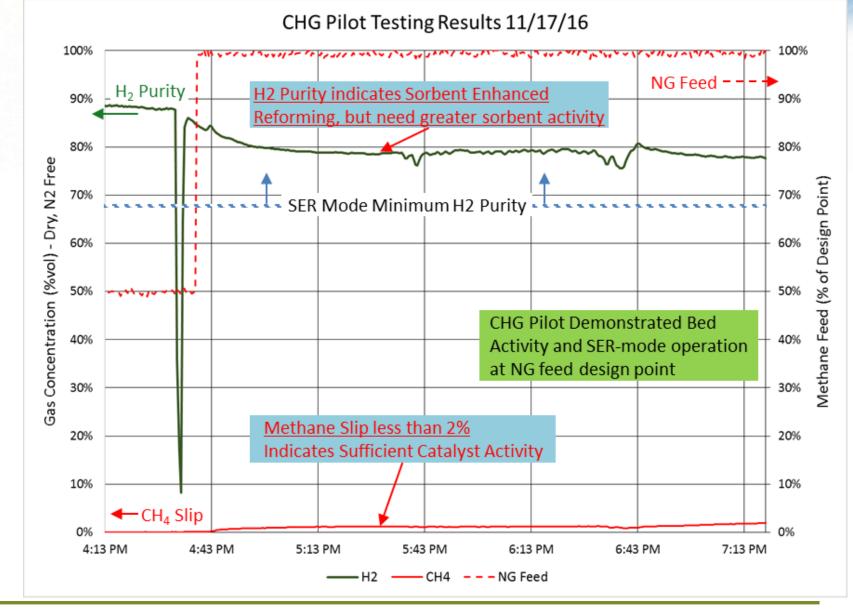
Accumulated 88+ hours of SER-mode and >200 hours of solids handling operation. Achieved up to 92% H2 purity

Test Article Skid

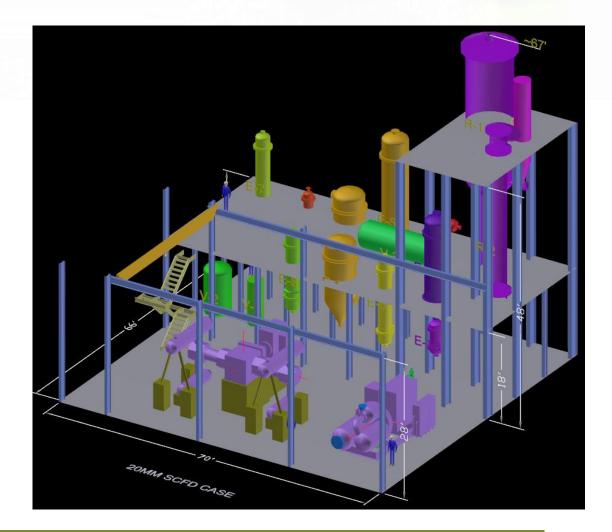


Hydrogen Production with Integrated CO₂ Capture

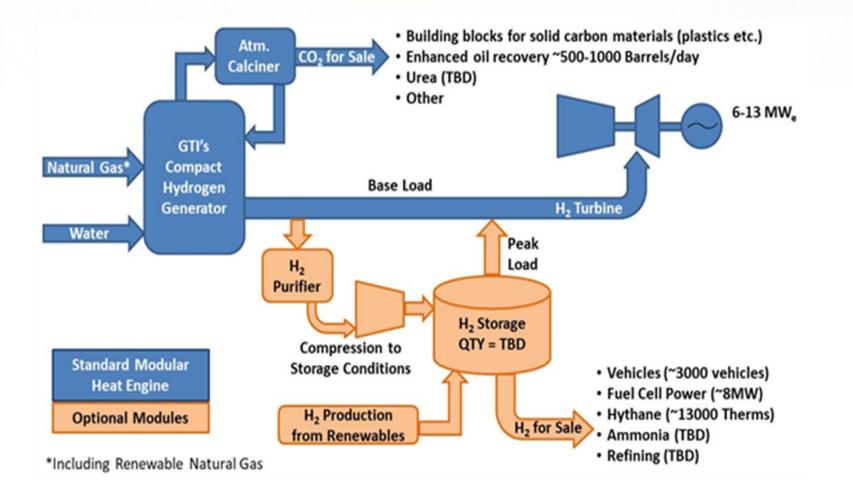
Pilot Successes


- Improved Sorbent flow via changing to larger particle size achieved three-fold increase in overall activity
- Key risk of catalyst deactivation was resolved via improved operating conditions and substrate changes
- Demonstrated bed reactivity at design feed rate. Identified sorbent activity as limiter.
 - Need greater sorbent feed rate

Pilot Testing


Demonstrated bed reactivity at design feed rate. Identified sorbent activity as limiter.

- Need greater sorbent feed rate



Modular Design Layout

- Worked with EPC firm to assess cost and sizing of small-medium sized plants
- Preliminary design of both a 5MMSCFD and 20MMSCFD demonstration plant performed
- Compactness lends to modularization (>60 MMSCFD) and factory built construction (<60 MMSCFD)
 - Enables lower Installed costs

H₂-Power System Concept (U.S. DOE)

H₂-Power Phase I Status

Phase II Risk Mitigation Scope

- Partnering with Turbine OEM's to define hydrogen requirements for gas turbines
- Developing ~ 30 40 MW case
- Developing U.S. site candidate (suitable site identified)
- DOE-NETL is validating Aspen
 models

Case specific optimization required to determine system efficiency vs. CO_2 capture

- GTI Technology Testing
 - Expanded pilot operation (>1000h)
 - Elevated pressure testing
- H₂ Purification, Compression and Storage
 - Functional testing & safety systems
- H₂-fired turbine development (OEM)
- Demonstration Plant Concept Definition
 - System Architecture
 - Final Sizing & Preliminary Design
 - Site preliminary design, permitting
 - Level 4 cost estimate & project schedule

Natural Gas Decarbonization for H₂ Production & Power

- GTI's CHG process has inherent CO₂ capture, ideal for low carbon H₂ production.
 - One-step conversion of natural gas to H₂
 - Lower product cost vs. current technology
 - Lower CO₂ capture cost vs. current technology
 - Expecting substantially lower CAPEX compared to SMR
 - Carbon capture from conventional SMR flue gas requires amine unit (additional CAPEX).
 - Other option includes autothermal reforming (ATR) but requires air separation plant

- GTI's process also attractive for low carbon power production
 - Pre-Combustion carbon capture solution for natural gas fired power plant
 - Lower cost of electricity compared to post-combustion capture

Application for Norway

- GTI's CHG process has inherent CO₂ capture, ideal for low carbon H₂ production.
- Expected to be very suitable for application in Norway

Contact: Markus Lesemann <u>mlesemann@gti.energy</u> +1 (919) 599 4096

- GTI is proposing a feasibility study for demonstration project for H₂ production with integrated CO₂ capture
 - Assess potential sites for H₂/CO₂ process applications
 - Prepare scope and preliminary engineering package for demo project
 - Cooperation between GTI and other stakeholders
 - Looking for interested partners

Hydrogen Production with Integrated CO₂ Capture

Turning Raw Technology into Practical Solutions

www.gti.energy | 🈏 @gastechnology

