NETWORK DESIGN AND FLEXIBILITY FOR LOW-PRESSURE DEPLETED GAS RESERVOIRS: HOT OR COLD CO2?

Dr. A. Twerda

ECN TNO innovation for life

DUTCH CLIMATE AGREEMENT

- ▶ 2030 → Reduction of 40%
- ▶ 2050 → Reduction of 93%
- Need CO₂ storage to reach these targets

1 Including reduction due to

decreasing demand for heat

SOURCE: Coalition Agreement 2017-2021

LOCATION, LOCATION, LOCATION

- Vast potential storage capacity beneath the North Sea (fields and formations)
- Prospective industry CCS operators require:
 - increased confidence in availability
 - sufficient capacity
 - > realistic costs and timing of storage provision.
- Increase operator certainty in future storage provision
- Re-use of existing infra structure
- Injection profiles

OPERATIONAL CONSTRAINTS

- Desired flow rates 15 170 kg/s (0.5-5.3 Mta) (through pipeline); preferred up to 70 kg/s per well
- Start reservoir pressure 20 bar; maximum Pres = 300 bar
- Pipeline Constraints
 - Single phase flow (cool down)
 - Minimum discharge pressure compressor
- Well Constraints
 - Downhole temperature T > 15 °C (hydrate formation in reservoir)
 - Topside piping
 T > -10 °C (material specs)
 - (Tubing vibrations; thermal/mass flow rate constraints for reservoir, thermal gradients in well (radial and axial))

CO2 INJECTION

- Large J-T coefficient (low temperatures top of well)
- Injection at two-phase flow leading to low temperature downhole

OPERATIONAL QUESTIONS?

- Hot or Cold injection?
 - Insulation of the transport pipe line
 - Feasibility vs costs of installation
 - Length of the pipeline
 - Lower well head temperatures \rightarrow higher injection rates (same injection pressure)

But

- Higher well head temperatures \rightarrow higher temperatures in the well and reservoir
- Diameter well
 - Larger well \rightarrow lower injection pressure

But

- Lower pressures lower BH temperatures in 2 phase conditions
- Well Shut-in
 - P-T profiles

200

300

▶ 120 °C

0.000109

0.000129

WARM OR COLD?

COLD INJECTION T10 °C, PRES=20 BAR

4000

COLD INJECTION T10 °C, PRES=100 BAR

WARM INJECTION T40 °C, PRES=20 BAR

WARM INJECTION T40 °C, PRES=100 BAR

OBSERVATIONS

- Low reservoir pressure
 - Cold injection more difficult
 - ➤ Well in 2 phase condition
 - The range of downhole temperatures higher than 15°C increases with increasing wellhead temperature.

- High reservoir pressure
 - Cold injection
 - > Well head pressure independent of mass flow , when in 2 phase condition
 - Warm injection
 - High injection pressure

DIAMETER EFFECT

RESERVOIR 20 BAR

16 | Network design and flexibility for low-pressure depleted gas reservoirs: hot or cold CO2?

OBSERVATIONS

- Smaller diameter
 - Higher pressure drop
 - Higher temperatures in 2 phase conditions
 - ➤ advantage for low reservoir pressures
- Larger diameters
 - Lower pressure drop
 - Lower temperatures in 2 phase conditions
 - ➤ advantage for high(er) reservoir pressures

ECN > TNO innovation

SHUT-IN PRESSURE 120

WELL SHUTIN

- Shut-in
 - Reservoir pressure 20 bar (30 kg/s)
 - Well shut in (~20 s)
- Red lines t = 0s & t = 5000s
- Blue lines 1 s interval
- Lowest temperatures -37 °C
 - Corresponding to phase line
 - Almost complete well drops down in pressure and therefore temperature

CONCLUSIONS

- When well is in 2 phase flow \rightarrow P & T are closely coupled
 - WHP no measure for flowrate or BHP
 - Mass flow controllers to monitor the flowrate
- Above reservoir pressure of 50 bar no issues with temperature
- Several counteracting phenomena observed
 - e.g. larger diameter well lower injection rate

Specific design required with mix of wells to be flexible at all stages of injection

THANK YOU FOR YOUR ATTENTION

1111.011

TNO.NL/ECNPARTOFTNO

ECN > TNO innovation for life