

Solubility of Hydrogen in Brines Under Geological-Storage Conditions

Geraldine Torín-Ollarves TCCS-10, Trondheim, 19th June 2019

- Motivation and background
- Experimental work
- Modelling approaches
- Conclusions and Future work

Motivation and Background

• ELEGANCY: coupling H₂

production with CCS

- Imperfect separation processes
 - \rightarrow impure CO₂ for storage
- H₂ impurity especially important
- Important to understand role of impurities in transportation and storage

Trapping mechanisms

- Structural trapping
 - Retention of mobile CO₂ below impermeable cap-rock
- Residual trapping
 - Retention of CO₂ as dispersed micro-bubbles within the pore space
- Solubility trapping
 - Dissolution of CO₂ into the native reservoir fluids
- Mineral trapping
 - Formation of carbonate minerals by chemical reaction

Available Experimental Data

• Solubility of $H_2O + H_2$

(11 papers up to 550 K) - 1990

• Solubility of $H_2O + CO_2 + H_2$

(1 paper at 298 K) - 1939

• Solubility of H₂ in Brines

(No data)

Experimental Approach

Experimental methods for high-pressure VLE

- Operation conditions: pressures \leq 70 MPa and temperatures \leq 473.15 K
- Fill gas \rightarrow inject liquid \rightarrow Disappearance of bubble \rightarrow PV analysis

Apparatus Design

High-pressure view cell and heated jacked

Assembled system

8

Validation: CO_2 solubility in H_2O

-

Imperial College London

9

Validation: CO_2 solubility in H_2O

Imperial College

London

•

Synthetic Approach

Visual Observation and PVT

Imperial College

ELEGANCY: Thermodynamic Property Models

- Thermodynamic property models for injection and storage

 To account for H₂ and other impurity gases
 To account for salts in the aqueous phase
 Experimental phase equilibria and phase properties required as inputs
- Model development: Ruhr-Universität Bochum
- Experimental measurements: Imperial College London

100

10

1

0.0001

p/MPa

Modelling of H₂ solubility in H₂O: fitting H_{12} and v_1

0.001 *x*(H₂) 0.01

298.15 K

373.15 K

0.001 x(H₂) 0.01

100

р/МРа

0.0001

Krichevsky–Kasarnovsky equation

$$\ln(f_1/x_1) = \ln H_{12} + V_1^{\infty}(p - p_{\rm ref})/(RT)$$

Imperial College

Experimental results: H₂ solubility in H₂O and brines

OWiebe & Gaddy (1934)
OPray et al. (1952)
OKling & Maurer (1991)
■ This work

Conclusions and Future work

- Validation of the system with CO_2 solubility in H_2O
- Experimental measurements on H₂ solubility in H₂O
- Measurements on solubility of H_2 in brines (NaCl 2.5 mol/kg) shows

a salting out effect of 25%.

Acknowledgement

ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), FZJ/PtJ (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco AS, Equinor and Total, and Statoil Petroleum AS, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712.

