

VESSEL DEPRESSURIZATION OF CO2-RICH FLUIDS FROM EXPERIMENTS TO SIMULATIONS

¹Vaillant G., ¹Garcia F., ¹Teberikler L., ²Fahmi A., ²Drescher M. ¹Total, ²Equinor

CONTENT

> INTRODUCTION

- Problem statement
- Cardice JIP

> EXPERIMENTAL SET-UP

- Overall description
- Instrumentation
- Site

> VESSFIRE

- General description
- Experimental vs. simulation results
- > CONCLUSIONS & CHALLENGES

INTRODUCTION

Vessel depressurization of CO₂-rich streams: From experiments to simulations – Trondheim, NORWAY – June 19th, 2019

3

(10"

CONFE

INTRODUCTION – PROBLEM STATEMENT

Design cost-efficient facilities for CCUS and operate them safely

Depressurization of vessels containing hydrocarbon fluids:

- No solid formation
- Available models in process software validated over many decades
- \succ For vessels containing pure CO₂ or CO₂-rich fluids:
 - Solid CO_2 formation \rightarrow More complex models
 - Only scarce experimental data exist.

Tuning / validation of these complex models require new experimental data

 \rightarrow Lack of validated software for blowdown of CO₂-rich mixtures

INTRODUCTION – CARDICE JIP

Main objectives of the CARDICE JIP

- CO₂ blowdown experiments at pilot scale, for different initial conditions...
- ... to improve and qualify VessFire as a tool for blowdown of CO₂ vessels

6 MNOK (50% support from Gassnova)

EXPERIMENTAL SET-UP

Vessel depressurization of CO₂-rich streams: From experiments to simulations – Trondheim, NORWAY – June 19th, 2019

6

(10"

CONFE

EXPERIMENTAL SET-UP – OVERALL DESCRIPTION

Setup

- 2m³ spherical HP/LT vessel (re-use)
- 10cm of rubber foam insulation

Compositions

From pure CH_4 to pure CO_2

Initial conditions

- From 135 down to 10 bara
- From 20° down to -40°C

Gas or liquid release

Vessel depressurization of CO₂-rich streams: From experiments to simulations – Trondheim, NORWAY – June 19th, 2019

EXPERIMENTAL SET-UP – INSTRUMENTATION

Vessel depressurization of CO₂-rich streams: From experiments to simulations – Trondheim, NORWAY – June 19th, 2019 8

(10"

CONFE

EXPERIMENTAL SET-UP – SITE

Vessel depressurization of CO₂-rich streams: From experiments to simulations – Trondheim, NORWAY – June 19th, 2019 9

(10"

CONF

Vessel depressurization of CO₂-rich streams: From experiments to simulations – Trondheim, NORWAY – June 19th, 2019 10

10" " CONFE

VESSFIRE – GENERAL DESCRIPTION

- Developed by Petrell (Norway) since 1998
- Pseudo 3D tool based on finite-element method and fluid dynamics modelling
- Non-equilibrium thermodynamic...
- ... with vapor, liquid and solid phases, including phase changes

Trondheim CCS Conference

Vessel depressurization of CO₂-rich streams: From experiments to simulations – Trondheim, NORWAY – June 19th, 2019 11

VESSFIRE – EXPERIMENTAL VS. SIMULATION RESULTS 100 bar, 20°C

Vessel depressurization of CO₂-rich streams: From experiments to simulations – Trondheim, NORWAY – June 19th, 2019 12

(10"

CONF

Vessel depressurization of CO₂-rich streams: From experiments to simulations – Trondheim, NORWAY – June 19th, 2019 13

(10"

CONCLUSIONS & CHALLENGES

(10"

CONFE

Vessel depressurization of CO₂-rich streams: From experiments to simulations – Trondheim, NORWAY – June 19th, 2019 14

CONCLUSIONS & CHALLENGES

> Experiments

- ~ 1-year of paper work & discussions (instrumentation, sphere modification...)
- All tests conducted successfully, with large amounts of solid CO₂ produced in some tests
- No safety issue

Vessfire PRELIMINARY assessment

Fluid state	P	Q _m	T _{gas}	T _{liq}	T _{w,min}
Gas only				N/A	
Gas & liquid (& solids)					

> Challenges

Experiments	Vessfire
 Ultrasonic flowmeters Mechanical integrity concerns Post-processing of data 	 Heat transfer between gas and walls Simulation speed Robustness for liquid release

