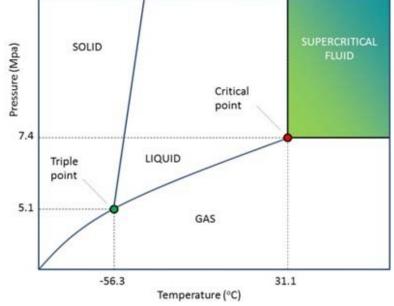


Toward the identification of optimal conditions for transport of CO₂ by ship

Simon Roussanaly^{a,*}, Han Deng^a and Geir Skaugen^a

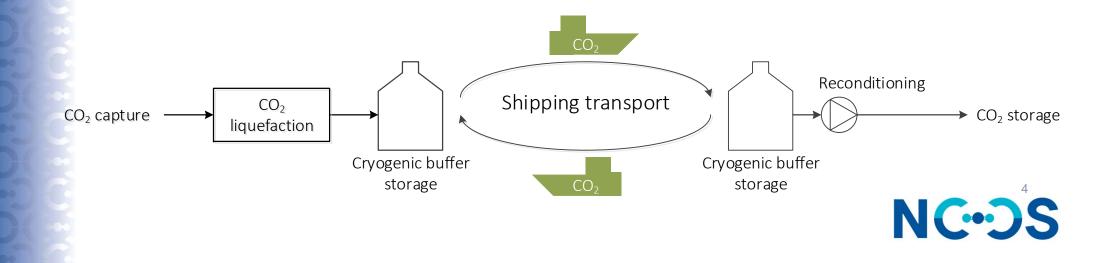

^a SINTEF Energy Research, Sem Sælandsvei 11, NO-7465 Trondheim, Norway * Corresponding author: Simon.Roussanaly@sintef.no

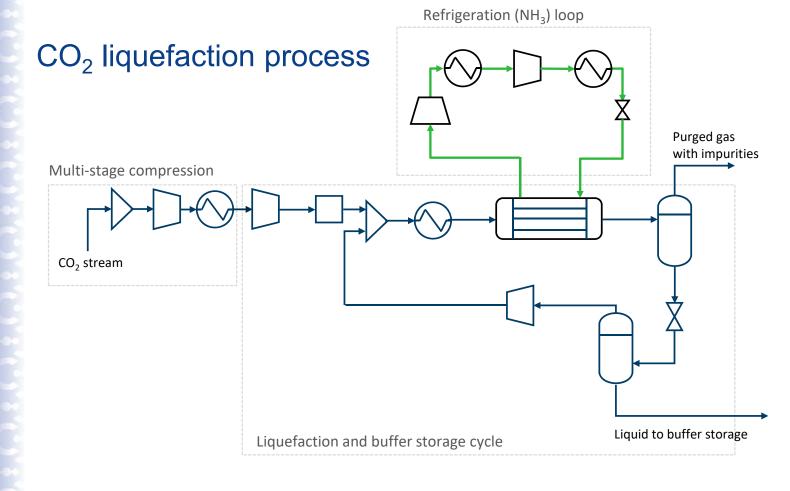
NC·DS

Background

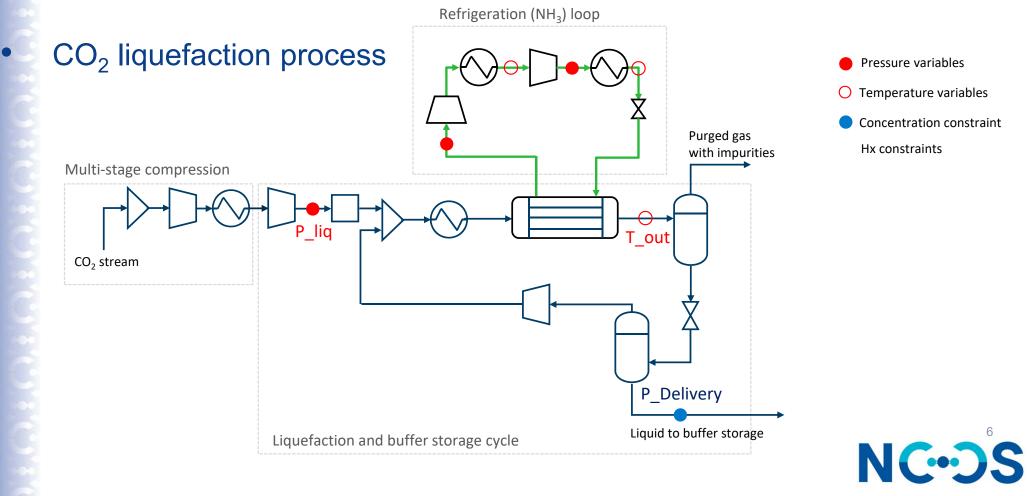
- CO₂ Shipping can be expected to play an important role in early CCS development, for "small" capacities, and/ or long distance transport
- Over the last few years, questions on optimal transport conditions (T and P) have been raised

Background

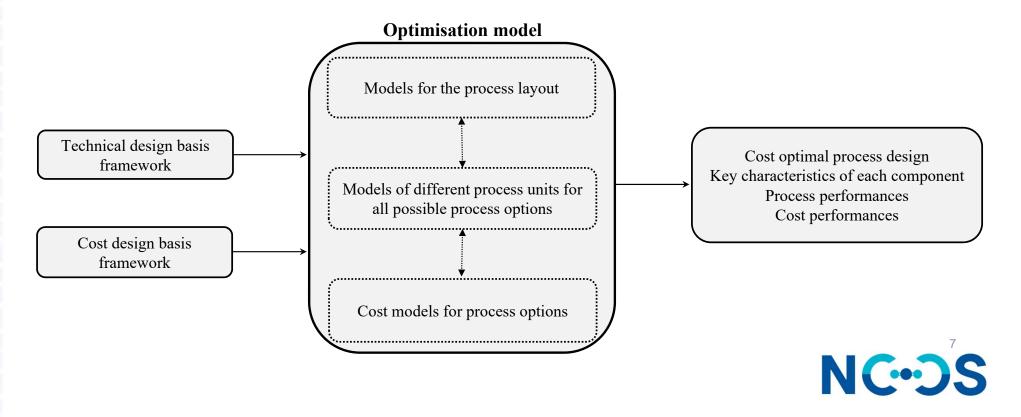


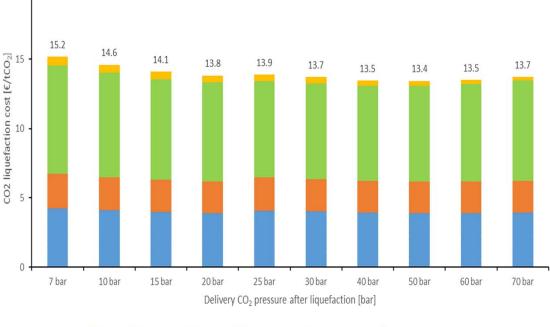

NC-DS

- CO₂ Shipping can be expected to play an important role in early CCS development, for "small" capacities, and/ or long distance transport
- Over the last few years, questions on optimal transport conditions (T and P) have been raised
 - Most of the recent literature (past 5-10 years) has focused on transport of CO₂ at 6.5 bar and -50°C
 - Meanwhile transport of food grade CO₂ currently take place at 15 bar
 - Preparatory work for the Norwegian full-scale
 - Initial work pointed at the 15 bar option as the best solution from the cost, safety and maturity perspective
 - Recently, it was indicated that 15 bar is the best option for the full-scale based on maturity and safety but that in the future lower pressure based transport could be a better solution
 - No openly public study has satisfactorily concluded on optimal transport conditions


Background

- Objective: Identification of optimal conditions (P,T) for transport of CO₂ by ship taking into account:
 - Impact of potential impurities in the CO₂ stream after capture
 - Transport distance and volume
 - Purity requirements from the storage site





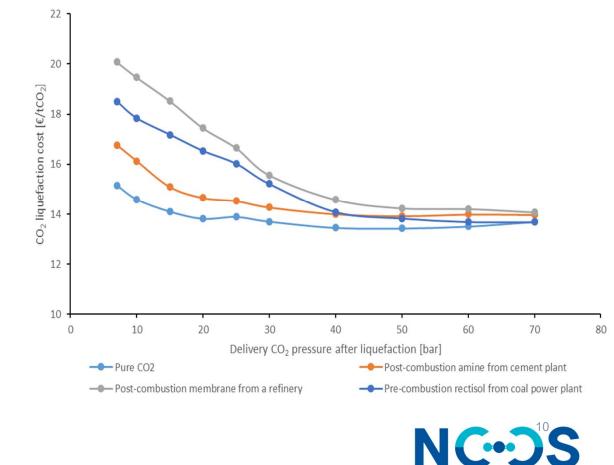
NC-DS

Impact of transport pressure and impurities on the CO₂ liquefaction process

20

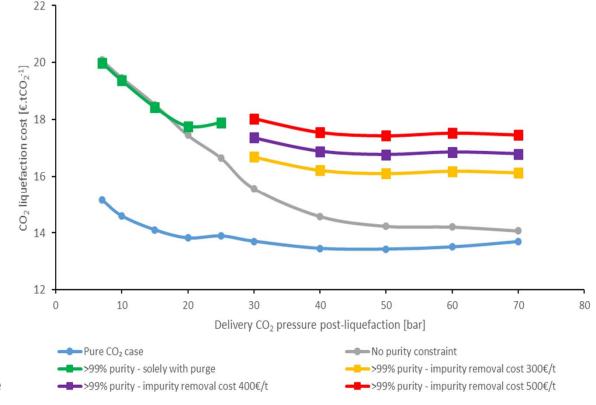
- CO₂ liquefaction cost for pure CO₂
 - Trends
 - Highest liquefaction cost at 7 bar
 - Between 7 and 20 bar, cost decrease by 9%
 - Lowest liquefaction cost at 40-50 bar (-13% compared to 7 bar)
 - Small increase beyond 50 bar
- Comparison of 7 v.s. 15 bar
 - 15 bar is 7% cheaper (1.05 €/tCO₂)
- Cost of buffer tanks and ship is not included and will impact the comparison

CAPEX Fixed OPEX Electricity Cooling water Impurity removal Purge cost Total



- 3 impurity scenarios
 - No purity requirement on CO₂ delivered after liquefaction

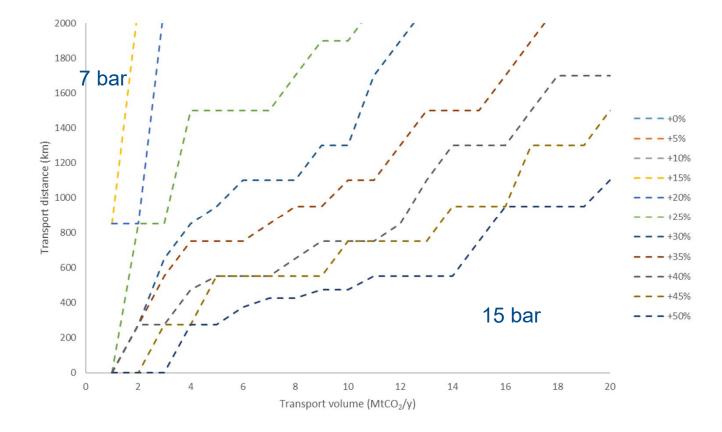
Capture route	Post-combustion	Post-combustion	Pre-combustion
Capture technology	Amine	Membrane	Rectisol
CO_2 source	Cement plant	Refinery	IGCC
CO ₂ [%]	96.86	97.0	98.42%
H ₂ O [%]	3.00	1.0	
N ₂ [%]	0.11	2.0	0.44%
O ₂ [%]	0.03		
Ar [%]	0.0003		0.09%
MeOH [%]	Similar level of impurities		0.57%
H ₂ [%]			0.45%
CO [%]		Similar level of no	on- 0.03%
$H_2S[\%]$		water impurities	0.0005%
Total [%]	100	100	100



- Impact of impurities
 - Impurity can have a significant impact (up to +34%)
 - Impact is the strongest for pressures below 30 bar
 - Both the type and level of impurity matters
 - Impact on the comparison between the 15 and 7 bar
 - Amine (-1.7), membrane (-1.6) and Rectisol (-1.3 €/tCO₂)

NC-DS

- Purity constraint: 99% (high purity CO₂)
 - 95% CO₂ recovery
 - Post-combustion membrane-based capture from a refinery
 - Impurity removal strategy
 - No purge below 15 bar
 - Purge at 20-25 bar
 - Impurity removal unit above 30 bar
 - Purity constraint significantly reduce the benefit of high pressure delivery



Toward the identification of optimal conditions for transport $rac{1}{2}$ of CO₂ by ship

- Integration of the liquefaction results with the shipping supply chain
 - A key element to reach reliable results lies on reliable ship and buffer costs in function of the transport pressure
 - Thus, the first step is to understand the impact of these on the comparison
 - Test case comparing 7bar and 15 bar
 - Varying ratio between buffer storage and ship CAPEX between the 15 and the 7 bar options from on par to +50%

Toward the identification of optimal conditions for transport of CO₂ by ship

NC-D'S

Ē

Conclusions and future work

- High delivery CO_2 pressure tends to results in lower CO_2 liquefaction costs
 - Strong decrease in cost for pressure from 7 to 30 bar
 - However, overall, the buffer tanks and ship export will become more costly as the transport pressure increase
- The results show that potential impurities can have a significant impact on the cost difference between pressure cases
 - These could have a significant impact the selection of the optimal transport conditions
- At the whole chain level, results show that establishing reliable buffer storage and ship cost estimates depending on the transport pressure is a key to identify the optimal transport conditions

Conclusions and future work

- Future work
 - Establishment of good cost estimates for ship and buffer storage depending on the transport pressure
 - Integrate the liquefaction result with an overall transport evaluations
 - Provide recommendations on optimal transport conditions (T and P) taking into account:
 - Impurity scenarios and purity requirements
 - Transport distance and volume

Acknowledgements

This presentation has been produced with support from the NCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: Aker Solutions, ANSALDO Energia, CoorsTek Membrane Sciences, Gassco, KROHNE, Larvik Shipping, Norcem, Norwegian Oil and Gas, Quad Geometrics, Shell, Statoil, TOTAL, and the Research Council of Norway (257579/E20).

Toward the identification of optimal conditions for transport of CO₂ by ship

Simon Roussanaly^{a,*}, Han Deng^a and Geir Skaugen^a

^a SINTEF Energy Research, Sem Sælandsvei 11, NO-7465 Trondheim, Norway * Corresponding author: Simon.Roussanaly@sintef.no

NC-D'S