

Modelling Bio-electrochemical CO₂ Reduction to Methane

Gamunu Samarakoon, <u>Anirudh B. T. Nelabhotla*</u>, Carlos Dinamarca, Dietmar Winkler, Rune Bakke

1

Introduction

- Anaerobic Digestion: Conversion of organic matter to methane and carbon dioxide with help of microorganisms in the absence of oxygen.
- A typical waste treatment plant in Norway produces biogas with about 60-70% methane and 30-40% CO₂.
- Biogas needs to be upgraded (separation or utilization of CO₂) to be used as a transport fuel.

Microbial Electrosynthesis System

- Convert electrical energy to chemical energy with help of microorganisms as catalysts.
- Carbon dioxide is reduced to methane at the cathode with an applied potential.

MES Integration with AD

(Nelabhotla et. al., 2019)

Model Development and Method

The reaction system in an anaerobic digester is complex with a number of sequential and parallel steps.

- · Biochemical reactions mediated by bacteria
- Physico-chemical reactions (*e.g.*, pH), and gas-liquid transfer.

MES Model Development and Method

$$\rho_{c1} = k_{\rm m}^0 X \frac{S_a}{K_a + S_a} \frac{S_d}{K_d + S_d}$$

Electrochemical substrate limitation

$$CO_2 + 8H^+ + 8e^- \xrightarrow{\rho_{c1}} CH_4 + 2H_2O$$

$$\frac{S_d}{K_d + S_d} = \frac{1}{1 + exp\left[-\frac{F}{RT}\eta\right]} \qquad \qquad \frac{S_a}{K_a + S_a} = \frac{S_{CO_2}}{K_{CO_2} + S_{CO_2}}$$

The electron-donor and the electron-acceptor substrates together limit the overall reaction

- k_m^0 maximum growth rate
- X micro org. con.
- S_a , S_d two "limiting-substrate" con.
- K_a , K_d half-maximum rate con. for substrates S1 and S2.

South-Eastern Non

a – electron acceptor d – electron donor

MES Model Parameters

$$\frac{S_d}{K_d + S_d} = \frac{1}{1 + exp\left[-\frac{F}{RT}\eta\right]}$$

- local potential(η) is defined = E_{KA} $E_{cathode}$
- E_{KA} is the potential in which the substrate consumption rate will reach half of the maximum substrate consumption (analogous to K_d).
- η accounts the electro active part of the rate expression
- The current study, E_{KA} is taken as the reference potential (*i.e.*, $E_{KA} = 0$)
- R = ideal gas law constant
- T = absolute temperature
- F = faraday constant

Model Assumptions

- Hydrogenotrophic methanogens (X_H₂) catalyse methane production from CO₂ via direct interspecies electron transfer (DIET).
- Complete mixed cathode compartment.
- Non- limiting flow of proton, and electron current supplies with separate anode compartment.
- The heterotrophic biogas production follows the ADM1 model.

Overall redox reactions

Oxidation reaction : $\frac{1}{2}H_2O \rightarrow H^+ + e^- + \frac{1}{4}O_2$ Reduction reaction : $\frac{1}{8}CO_2 + H^+ + e^- \rightarrow \frac{1}{8}CH_4 + \frac{1}{4}H_2O$

Simulation Result – Anaerobic Digestion

Conventional AD for baseline data - Batstone Model

- CSTR reactor
- 50 days
- Feed step increases at day 16 and 37
- Feed composition

Components in the feed	Concentrations kg COD
Amino acids	4.2
Fatty acids	6.3
Monosaccharides	2.8
Complex particulates	10
Total	23.3

Feed flow to AD

Batstone, et al. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology, 45(10), 65-73.

Conventional AD for baseline data

Saturated Potential and Substrate Limitation

Local potential (η) is increased from -0.2 to +0.2 v stepwise. $r = k_{\rm m}^0 X \frac{1}{1 + exp \left[-\frac{F}{RT}\eta\right]} \frac{S_{co2}}{K_{s_co2} + S_{co2}}$

Soluble substrate

Electrode

6/18/2019

Biogas Composition

- Biogas methane content rise up to 85 % from 65 %.
- Further increase of η does not result in rise of methane content.
- Substrate limitation (S_CO₂)

pН

- pH of the digester rises due to depletion of headspace CO₂ and depletion of protons.
- The rise of pH inhibits heterotrophic biogas production.
- However, the methane yield (MY) increases, due to electrochemical contribution.

External CO₂ Source

- Overcome the substrate limitation (S_CO₂)
- Reduce the pH inhibition
- It will increase the specific CH₄ yield
- Utilisation of CO₂ as opposed to capture for storage

CO_2 loading conditions

Duration (d)	CO ₂ loading (M. d ⁻¹)
400-450	0
450-500	0.01
500-550	0.015
550-600	0.02

South-Eastern Norway 6/18/2019

University of South-Eastern Norway 6/18/2019

Restrictions on the Model

- Electron flow or current (internal and external resistance, overpotential of anodic oxidation reactions, conductivity)
- Electrode area (geometry, which depends on space available in the reactor)
- Morphology of the biofilm on the cathode (availability of the specific micro-organism on the cathode biofilm)
- Electron transfer coefficient (all electrons which flow to the cathode are not available for this specific reaction, *e.g.*, parallel reduction reactions, cell synthesis)
- Mass transfer in the biofilm on the cathode.

Conclusion

- AD with MES can increase the biogas methane content from 65 % to 80-90 % (v/v).
- The rate of reaction can be controlled by the substrate concentration and local potential.
- It is necessary to maintain a buffer system to prevent pH inhibition.
- Addition of external CO₂ to an ADMES, operated under limited organic loading could achieve simultaneous bio-methanation of CO₂ 20%.
- Industrial CO₂ emissions can also be reduced to methane which increases the methane yield without decreasing methane concentration to less than 80%.

References

- Nelabhotla ABT, Dinamarca C (2019) Bioelectrochemical CO₂ Reduction to Methane: MES Integration in Biogas Production Processes. Appl Sci 9:1–13. doi: 10.3390/app9061056
- Nelabhotla ABT, Dinamarca C (2018) Electrochemically mediated CO₂ reduction for bio-methane production: a review. Rev Environ Sci Bio/Technology 17:531–551. doi: 10.1007/s11157-018-9470-5
- Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., . . . Vavilin, V. A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). *Water Science and Technology, 45*(10), 65-73.
- Marcus, A. K., Torres, C. I., & Rittmann, B. E. (2007). Conduction-based modelling of the biofilm anode of a microbial fuel cell. Biotechnology and Bioengineering, 98(6), 1171-1182.
- Logan, B. E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K., Environmental Science & Technology 2006, 40 (17), 5181-92.
- Cheng, S.; Xing, D.; Call, D. F.; Logan, B. E., Environmental Science & Technology 2009, 43 (10), 3953-8.