

10th Trondheim CCS Conference

Project no 271501, ACT – Accelerating CCS technology

Planning CO₂ transport and storage infrastructure in the Netherlands offshore

Ton Wildenborg, Daniël Loeve & Filip Neele (ECN.TNO)

Contents

- Objective and context
- Matching demand and supply of storage capacity
- Storage technical cost analysis
- Transport infrastructure and technical costs
- Conclusion

Objective and context

- To develop transport and storage scenarios for the Rotterdam Harbour Area
- Aligned with NL objectives to capture and store CO2 from industrial installations up to 7 Mtpa
- Porthos consortium (Rotterdam) considers 5 Mtpa scenario which could grow to 10 Mtpa or more after 2030
- Earlier work was presented at GHGT-14 in Melbourne
- Additional work with the use of an expanded version of the ECCO tool and new cost data from EBN report in 2017

Current CCS activities in the netherlands

- Rotterdam harbour: Porthos consortium
 - 20% of national emissions
 - Develop into 'green port'
 - Continue economic activity under increasingly strict greenhouse gas emission regulations
 - Target ~5 Mtpa by 2030; to grow beyond 2030

Transport and storage of CO₂ in NL, 2017

Considered network development scenario

- CO₂ supply from Rotterdam region
- First element ('A') currently being designed
- Design element 'A' depends on choices made for later elements
- Network development depends on:
 - Unit costs of storage and transport
 - Risk assessment of clusters and fields
 - Availability of fields, platforms & wells
 - Storage capacity & injection rates

5 Mtpa scenario can be easily accommodated.

Trondheim, Norway, 18 June 2019

5 Mtpa scenario – Lower rates at BHP < 50 bar

Trondheim, Norway, 18 June 2019

10 Mtpa with constrained injection rate

Cost analysis with warm CO₂ injection in 3 reservoirs (I)

Trondheim, Norway, 18 June 2019

Cost data (modified after EBN, 2017 & ROAD, 2018)

Well and field-related costs	Unit	Value
Drilling & completion capex per well	M€/well	21
Workover cost per well (opex)	M€/well	0.8
Average time between workovers for a well	У	5
Well opex	M€/well/y	2
Transfer to injector cost	M€/well	8
Modification satellite platform	M€/cluster	11
Modification export platform	M€/cluster	15
New satellite platform (4-well monotower)	M€/cluster	22
New export platform (6-well monotower)	M€/cluster	25

Storage Capex and Opex – undiscounted (II)

Trondheim, Norway, 18 June 2019

Unit Technical Costs of storage (EUR/tonne CO₂) (III)

 Excluding compression and transport costs

Cost data for transport infrastructure (modified after EBN, 2017 and ZEP; no insulation)

Capex

Diameter (inch)	Distance (km)	MEURO
18	10	50
18	50	71
18	100	92
18	150	110
18	200	128

Opex

- Based on fixed 0.25% of Capex
- 29% based on variable CO₂ throughput

Transport costs with insulated pipeline segments for 3 reservoirs (5 Mtpa scenario)

Unit Technical Costs for pipeline segments

Length pipeline segment (km)

 Unit Technical Costs for pipeline infrastructure (without compression):

 $2.5 EUR/tonne CO_2$

With insulation

Conclusion

- Sufficient storage capacity is timely available for 10 Mt scenario.
- It is a **logistical challenge** to develop and operate 5 to 10 reservoirs in parallel (depending on the target injection rate and constrains in the rate).
- **UTC for storage** is mostly around 4 to 6 EUR/tonne CO₂ which is well comparable to the outcomes in EBN & Gasunie (2017).
- **UTC for transport** without compression is around 2.5 EUR/tonne CO₂, which is slightly higher than in EBN & Gasunie (2017).
- Thermal insulation of pipelines provides more flexibility but can be costly depending also on the CO_2 throughput.
- Note that the actual tariffs will differ significantly from the presented technical costs analysis (up to factor 2).

Acknowledgements

ACT ALIGN CCUS Project No 271501

This project has received funding from RVO (NL), FZJ/PtJ (DE), Gassnova (NO), UEFISCDI (RO), BEIS (UK) and is co-funded by the European Commission under the Horizon 2020 programme ACT, Grant Agreement No 691712

www.alignccus.eu

