

Outline

- Background Conditions for BECCS in Aalborg, Denmark
- Techno-economic analysis of CO₂ capture on a bio-combined heat&power plant
- CO₂ storage site characterisation and CO₂ injection analysis
- Concluding remarks

Conditions for BECCS in Aalborg, Denmark

- Denmark is gradually converting their heat and electricity production from fossil-fired combined heat&power (CHP) plants to renewables, supplimented with bio-CHP plants
- Nordjyllandsværket in Aalborg municipality CHP plant presently running on coal
 - · Ongoing dicussions and evaluations on conversion to biomass-fired
- Several geological formations with suitable reservoir properties for storage in proximity to Aalborg

Bio-CHP with absorption-based CO₂ capture

- Focus on back-pressure operation
 - Plant operated to maximize heat production with surplus electricity generation
- Steam from power plant required in the CO₂ capture plant (MEA-based CO₂ absorption)
- Thermal CHPs in Denmark rarely operate at maxmimum capacity
 - Part-load operation of interest
 - Appropriate size of capture plant

The role of CHPs in district heat production

Example of yearly DH production in the Aalborg municipality

2015

Integration of CO₂ capture with the steam cycle and DH system

Potential for considerable heat recovery from CO₂ capture plant to DH system

 \rightarrow should improve plant efficiency and economics (CAPEX \uparrow < OPEX \downarrow)

Definition of capture cases

Techno-economic evaluation of four different cases

Case no.	Boiler load	DH recovery in CO ₂ capture plant	Net CO ₂ capture rate
0	100%	No	90%
1	100%	Yes	90%
2	75%	Yes	90%
3	100%	Yes	71%*

Boiler LP. HP+IP DH HX Steam to CO₂ capture plant ~ 3 bar CO2 capture plant Stripper reboiler DH system DH recovery from CO₂ capture plant Various heat sources

^{*90%} CO_2 capture from a **slip flue gas stream**, the remainder by-passes the capture plant. Same size of capture plant in case 3 as in case 2, i.e. same amount of t CO_2 /h captured.

External heat recovery HX network

condenser

Process modeling

Boiler Fuel input [MW _{th}]	•		Mass flow,	Molar compositions (%)				
	°C	t/h	CO ₂	N ₂	O ₂	H ₂ O	Ar	
100%	640	56	1120	12.9	66.3	4.4	15.5	0.8
75%	497	56	878	12.8	66.4	4.6	15.5	0.8

- Inputs: Flue gas data from Avadøre 1, CHP converted from coal to 100% wood pellets
- Process simulators:
 - Power plant: Rambøll in-house mass&energy balance modeling tool (Mopeds)
 - CO₂ capture plant: Aspen HYSYS V9

Heat recovery from the capture process has a stronger effect than part-load operation and capture plant size

Parameter	Case 0	Case 1	Case 2	Case 3
Boiler load [%]	100	100	75	100
Heat recovery from capture process	No	Yes	Yes	Yes
η _{el} [%]	25.2	25.2	25.7	27.6
η _{thermal} [%]	56.2	66.9	67.1	71.8
CO ₂ captured** [Mtpa]	1.6	1.6	1.3	1.3
Effective CO ₂ capture rate [%]*	90	90	90	71

^{**} With 8400 operating hours per year

Important cost assumptions:

• Electricity price: 30 €/MWh

• District heat price: 50 €/MWh

CO₂ storage site in the 'Langerak' structure, 6 km SE of the plant

- Gassum Formation (Sandstones of Upper Triassic Lower Jurassic age)
- 4-way closure with good reservoir properties (permeability ~50-200 mD)
- 1 injection well, 1 to 2 water producton wells for pressure management

CO_2 plume and pressure development after 30 years of injection, injection rate = 1 Mtpa

- A voidage replacement of approx. 50% could maintain the pressure increase below 5 bar at the boundary of the storage complex for two production wells. A pressure increase below 1 bar required voidage replacement of 70%.
- Unresolved regulatory issues on how much the pressure is allowed to increase
- Heat from produced water can potentially be used in the district heating system

Concluding remarks

- Techno-economic evaluation of MEA-based CO₂ capture integrated in a bio-CHP plant
 - Effect of heat recovery to district heat system, CHP load conditions and size of CO₂ capture plant were investigated
- Capture costs calculated in the range of 52-77 €/t CO₂
 - Heat recovery from CO₂ capture process for DH utilization significantly improves the techno-economic performance of the integrated system → results in ~30% reduction in CO₂ capture cost, from 77 to 52 €/t CO₂
 - Not strongly affected by capture plant size and boiler load in the range of 75-100% boiler load

Concluding remarks

- A promising storage site, the Langerak structure in the Gassum formation, in proximity to the Nordjyllandsværket CHP
 - Injection of up to 1 Mtpa of CO₂ for 30 years is feasible from one injection well
- The investigated bio-CHP + CO₂ capture plant is an example of BECCS application
 - Potential to be CO₂-negative, given proper management of biomass supply chain

Process flow diagram for the bio-CHP steam cycle

Process flow diagram for MEA capture process

Cost estimation method – Bottom-up analysis

CAPEX:

Total equipment costs (TEC) Installation costs **Total direct costs** without process contingencies (TDC') Process contingencies TDC' × Cprocess **Total direct costs** with process contingencies (TDC) Indirect costs TDC + fx Eng. Proc. Constr (EPC) Owners costs $TDC \times f_{OC}$ Project contingencies TDC × Cproject Total plant cost (TPC)

OPEX:

Technical results – CO₂ absorption

Parameter	Value
CO ₂ product purity [mol%]	99.4
Purified flue gas temperature [°C]	64
Purified flue gas pressure [bar]	1.02
Specific stripper reboiler duty [MJ/kg CO ₂]	3.83
Stripper reboiler temperature [°C]	119.3
Specific power consumption [MJ/kg CO ₂]	0.53
Specific cooling demand, w/o heat recovery for DH [MJ/kg CO ₂]	4.2
Specific MEA make-up [kg/t CO ₂]	2
Specific process water make-up [kg/t CO ₂]	615

Cost assumptions overview

General				
Cost basis	€ ₂₀₁₅			
Operational life [years]	25			
Plant construction time [years]	3			
Discounted cash flow rate [%]	8			
Yearly operating hours [h]	8400			
CAPEX				
Process contingencies [% TDC']	18			
Indirect costs [% TDC]	14			
Owner's costs [% TDC]	7			
Project contingencies [% TDC]	15			
OPEX				
Insurance and local taxes [% TPC]	2			
Maintenance cost with maintenance labour [% TPC]	2.5			
Operating labour, number of persons in capture plant	20			
Cost of operating labour [k€/person/year]	60			
Maintenance labour cost [% of maintenance cost]	40			
Administrative labour cost [% O&M labour cost]	30			
Cooling water [€/m³]	0.02			
MEA [€/t]	1450			
Process water [€/m³]	6.65			
Electricity [€/MWh]	30.1			
District heat [€/MWh]	49.9			

Technical results – AVV 1 with CO₂ capture

Parameter	100% load, no CCS	75% load, no CCS	Case 0	Case 1	Case 2	Case 3
Fuel input [MW _{th}]	640	497	640	640	497	640
Gross power [MW _{el}]	234	180	203	203	160	213
Power consumption, CO ₂ capture plant [MW _{el}]	0	0	29	29	23	23
Net power [MW _{el}]	219	170	161	161	128	177
District heat from power plant [MW _{th}]	352	273	170	170	129	206
District heat from CO ₂ capture plant [MW _{th}]	0	0	0	97	76	76
Heat for CO ₂ capture [MW _{th}]	0	0	209	209	164	164
η _{thermal,net} [%]	89.2	89.2	56.2	66.9	67.1	71.8
η _{electrical,net} [%]	34.3	34.2	25.2	25.2	25.7	27.6
CO ₂ captured [t/h]	0	0	196	196	155	155
Net CO ₂ capture rate [%]	-	0	90	90	90	71

The CONvert concept

- 1. Surplus EL to heat
- 2. Surplus EL to CO₂/CH₄
- CO₂ capture from biomass CHP and option for future synthetic fuel production

Methodology for techno-economic assessment

Power plant data

CO₂ capture process simulations (energy and mass balances)

Cost estimations (CAPEX + OPEX)

Cost of CO₂ captured/avoided

