Cold flow experimentation of 1.5 MW Chemical Looping Combustion unit

Sina Tebianian, Benjamin Amblard, Stéphane Bertholin Ann Cloupet, Stéphane Girardon, Florent Guillou, Catherine Laroche

OTAL Mahdi Yazdanpanah, Aoling Zhang

Zhenshan Li , Hu Chen

Weicheng Li , Xinglei Liu

Introduction

- Chemical Looping Combustion (CLC) is an oxy-combustion technology for CO₂ capture.
- Benefits are low energy penalty and CO_2 avoidance cost¹.
- CHEERS project aims demonstration of a CLC pilot at 3 MW scale.
- An equivalent of 1.5 MW_{th} cold flow model was designed and built to study the hydrodynamics.
 Reference Amine CFB unit MEA30%
 Net Electric production (MWe) 630 630

1) T. Gauthier et al. (2017) Powder Technology, 316,3 -17

18 June 2019 TCCS10-Trondheim

CLC

630

40

222

1785

206

88

37

44.9

198

1215

156

63

34.9

255

2064

220

98

53

Net Electric vield (%)

Coal consumption (t/h)

Capex (M€)

Opex (M€)

Cost of Electricity (€/MWh)

CO2 avoidance cost [€/t/CO2)

Objectives

- The cold flow model experimentation aims to study :
 - Transport of oxygen carrier in air reactor
 - Fluidization of oxygen carrier and Petcoke in fuel reactor
 - Solid circulation control between air reactor and fuel reactor
 - Carbon stripper efficiency
- Dimensions are significant for hydrodynamic characterization.
- First experimental campaign was performed and preliminary results are presented.

Air reactor and Dividing fluidized bed

- The AR was designed with two sections in order to have the maximum flexibility of operation:
 - AR1 can be operated as a bubbling/turbulent or fast fluidization flow regime (Inspired by the current operation of a boiler)
 - AR2 represents a riser operating in transport regime.
- The AR section was studied by different Ugs and different solid fluxes to have indication on the hot pilot operation.
- The dividing fluidized bed is a part of IFPEN/Total design for controlling the recycle ratio in the AR2 and the solid flow to the Fuel reactor

Fuel reactor, Carbon Stripper and solid circulation

- Dense section and dilute section :
 - Dense fluidization to assure proper mixing between the injected solid fuel, OC and fluidization gas
 - Riser to transport to the Carbon stripper
- Solid flow is controlled by L-valves between AR and FR.
- The entire loop is equipped with pressure measurements.

Solid circulation

- Step by step circulation was performed in the entire loop.
- The L-valves design and operation was based on previous works at IFPEN¹.
- Solid circulation was first calibrated by operating the L-valve between DFB and AR2.
- The stable solid circulation was achieved by opening the Lvalves and loop seals.

1) Yazdanpanah, et al. (2012) Powder Technology, 221, pp. 236-244.

Quantitative results

- Stable solid flux achievable in the AR riser (AR2) was investigated by changing the superficial gas velocity and L-valve solid feeding.
- The solid flux of around 30 kg/m2-s was achieved with a riser velocity of 5 m/s. Higher solid fluxes would have caused choking.
- Ug's higher than 6 m/s assured a smooth solid circulation in the riser.

Quantitative results

- FR was operated at three superficial gas velocities (0.7, 1 and 1.5 m/s) with different solid circulations in the entire loop ranging from 0.5 to 3 kg/s.
- The sensitivity of FR dense phase height to the solid circulation and gas velocity was evaluated:

Gs (kg/s)	FR Ug (m/s)	H FR (m)
А	1.0	В
0.23*A	1.0	B-0.2
1.2*A	1.0	B+0.6
0.4*A	1.5	B-1.1
1.2*A	1.5	B+0.1
0.4*A	0.7	B+0.5

Conclusions and perspectives

- Cold flow model with representative dimensions was built and operated.
- Stable and controlled solid circulation using L-valves was achieved.
- Hydrodynamic study of AR, DFB, Cyclones and FR sections performed.
- Carbon stripper efficiency and solid-solid mixing in the FR are ongoing research.

sina.tebianian@ifpen.fr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764697. The project is also co-funded by the Chinese Ministry of Science and Technology (MOST).

