Adsorbent Screening for novel Swing Adsorption Reactor Cluster (SARC) in Post Combustion CO₂ Capture

Chaitanya Dhoke¹, Schalk Cloete², Shreenath Krishnamurthy², <u>Abdelghafour Zaabout²</u>*, Hwimin Seo³, Ignacio Luz⁴, Mustapha Soukri⁴, Yong-ki Park³, Richard Blom², Shahriar Amini^{1,2}

¹ Norwegian University of Science and Technology, Trondheim, Norway
² SINTEF Industry, Trondheim and Oslo Norway
³Korea Research Institute of Chemical Technology, Daejeon, South Korea,
⁴ Engineering Systems, RTI International, Research Triangle Park, NC, USA

TCCS-10

Content

- SARC concept
 - What?
 - How?
 - Why?
- Results & Discussion
 - Study 01- Comparative study
 - Study 02- Sorbent screening
 - Study 03- Effect of steam on two potential sorbents
- Path forward
- Conclusion and questions

Swing Adsorption Reactor Cluster (SARC) for post combustion CO₂ capture

What?

Working principle

- A low temperature adsorption based CO₂ capture
- Lower energy penalty by:
 - Combining vacuum and temperature swings for sorbent regeneration
 - Heat integration between the stages using a heat pump

Main advantages

- It only needs electricity
 - Easy retrofitting to existing plants
 - It can benefits for future electrification of industrial sector

Zaabout, A., M. C. Romano, S. Cloete, A. Giuffrida, J. Morud, P. Chiesa and S. Amini (2017). <u>International Journal of Greenhouse Gas Control **60**: 74-92.</u>

SARC conceptual design

SARC cycle for capturing CO₂

SARC uses a cluster of fluidized bed reactors each reactor cycles the four following stages:

- Carbonation: capturing CO₂ from the flue gas
 - Low temperature and atmospheric pressure pressure
- Evacuation: to control CO₂ purity
 - The pressure is decreased at constant temperature
- Regeneration: to release CO₂ from the sorbent
 - The pressure is further decreased and the temperature is increased
- Cooling:
 - the temperature and pressure are brought back to the initial conditions for starting a new cycle

$$Am(s) + CO_2(g) \leftrightarrow AmCO_2(s)(\Delta H = 75 \text{ kJ mol}^{-1})$$
(1)

$$H_2O(g) \leftrightarrow H_2O(s)(\Delta H = 43 \text{ kJ mol}^{-1})$$
 (2)

SARC technology

Why?

- SARC has a very competitive energy penalty
- Lower SPECCA could be achieved if renewable electricity is used
- Easy retrofitting to existing plants

SPECCA: specific primary energy consumption per avoided CO_2 for the different CO_2 capture technologies

Cloete, S., A. Giuffrida, M. C. Romano and A. Zaabout (2019). Journal of Cleaner Production 223: 692-703.

Experiment demonstration approach

First proof of technical feasibility

- Screening the sorbents under real SARC conditions
- Practicing combination of vacuum and temperature swings
- Identify unforeseen challenges

Simplistic experimental set up

Dhoke, C., et al. Chemical Engineering Journal, 2018.

Study 01- Comparative Study (TSA vs. VTSA)

EB-PEI : 1,2-Epoxybutane functionalized polyethyleneimine supported on SiO₂ sorbent supplied by KRICT

Dhoke, C., et al., *The swing adsorption reactor cluster (SARC) for post combustion CO*₂ *capture: Experimental proof-of-principle*. Chemical Engineering Journal, 2018 (In press)

Study 01 - Comparative Study (TSA vs. VTSA)

VTSA reduce the required temperature swing by 30-40 K relative to TSA for achieving a given working capacity.

- Adsorbent: Polyethyleneimine (EB-PEI)-KRICT
- Adsorption 333K & 100 Kpa in 12.5% CO₂
- Regeneration: VTSA- 5kPa
- Regeneration: TSA- 100% of CO₂

TSA: Temperature swing adsorption VTSA: Vacuum combined with temperature swing

Dhoke, C., et al., *The swing adsorption reactor cluster (SARC) for post combustion CO₂ capture: Experimental proof-of-principle.* Chemical Engineering Journal, 2018 (In press)

Study 02-Sorbents Screening

EB-PEI : 1,2-Epoxybutane functionalized polyethyleneimine supported on SiO₂ sorbent supplied by KRICT

- **PEI-MOF**: Polyethyleneimine and Metal organic framework supported on SiO₂ developed at RTI
- K/ZrO_2 : Potassium sorbent supported on $ZrO_2(K/ZrO_2)$ supplied by KRICT

 Na/ZrO_2 : Sodium sorbent supported on ZrO_2 (Na/ZrO₂) supplied by KRICT

Submitted to Chemical Engineering Journal (CEJ-D-19-06367)

Study 02- Screening of sorbent-VTSA

Regeneration pressure (kPa) and temperature swing (K)

Submitted to Chemical Engineering Journal (CEJ-D-19-06367)

 $\textbf{EB-PEI} \quad : 1, 2-\text{Epoxybutane functionalized polyethyleneimine supported on SiO}_2 \text{ sorbent supplied by KRICT}$

 $\textbf{PEI-MOF:} Polyethyleneimine and Metal organic framework supported on SiO_2 developed at RTI$

Submitted to Chemical Engineering Journal (CEJ-D-19-06367)

Effect of steam on VTSA-100 mbar & 20 C

- Increase in the working capacity by the addition of the H₂O for both PEI sorbents
- Dilution of CO₂ by the desorption of water enables good desorption driving force

*WS- with 5 mole % water *WOS- without water

Submitted to Chemical Engineering Journal (CEJ-D-19-06367)

🗅 NTNU

SARC- multistage fluidized bed

to the vent

- Multistage fluidized bed
- Achieve more plug flow behaviour in the reactor
 - Flue gas with decreasing P_{CO2} as it rises should meet fresher sorbent
- Maintain high heat transfer rate for heat recovery or addition

overall CO₂ capture efficiency and purity

Reactor design

- Reactor design was investigated using CFD simulations
- Horizontal rows of narrowly spaced tubes were required to restrict axial back-mixing
- Such a more segregated solids CO₂ loading profile ensures higher CO₂ capture
- This behavior could be simply reproduced by a single narrow tube, which was recommended for the first experimental campaign

CO_2 mole fraction in the reactor outlet

Tightly spaced tubes

No tubes

Reactor without tubes

Demonstration of SARC concept in a multistage reactor with embedded heat transfer surfaces

- A four-stages reactor (10 cm ID and 200 cm height)
- Integrated heat transfer surfaces for temperature swing
- A vacuum pump is used for the vacuum swing

SARC- Big reactor

Summary

- Promising energy efficiency for capturing CO₂ in coal and cement plants using the SARC adsorption technology
- VTSA reduces the required temperature swing by 20-30 K relative to TSA for achieving a given working capacity
- Polyethyleneimine(PEI) sorbents proved to be the best suited for SARC
- Dilution of CO₂ by the desorption of water enables good desorption driving force in SARC (VTSA effect)
- A multistage bench scale reactor setup was designed and constructed for demonstration and validation of the SARC concept

Acknowledgement:

- Norwegian Research Council for funding SARC project ((grant no. 268507/E20)
- EPT management, lab manager and technicians

Adsorption concept- Isotherm Model

