

Development of 3D printed amine grafted silica adsorbents for CO₂ capture – adsorbent preparation, performance and potential applications

Anna M. Lind¹, Soraya N. Sluijter², Bjørnar Arstad¹, Shreenath Krishnamurthy¹, Carlos A. Grande¹, Paul D. Cobden², Robert de Boer² and Richard Blom^{1*} (Richard.blom@sintef.no)

 ¹ SINTEF Industry, Forskningsveien 1, P. O. box 124 Blindern, N-0314 Oslo, Norway
 ² ECN part of TNO, Westerduinweg 3, Postal code: 1755 LE, Petten, The Netherlands

- Why CO₂ capture by solid adsorbents?
- Why 3D-printed adsorbents?
- How do we make the 3D-printed adsorbents and how do they work?
- A post-combustion case comparing a VSA process using traditional pellets vs. 3D-printed adsorbents
- Some final remarks

Why CO₂ capture by solid adsorbents?

- A good solid adsorbent is a high surface area material with high physical and chemical stability under the relevant conditions, that
 - can fast adsorb significant amounts of CO₂ selectively over the other gases present, and,
 - can fast release CO₂ either by lowering the partial pressure of CO₂ or by heating the adsorbent.
 - ✓ In principle low energy requrements for regeneration !
 - ✓ Mostly low environmental impact

Why CO₂ capture by solid adsorbents? Contd...

- In a process utilizing solid adsorbents, the solid adsorbent material is operating between an adsorpion phase and a desorption (regeneration) phase, either by moving the powder between different zones, or by changing the atmosphere around the solid adsorbent:
 - PVSA Pressure-vacuum swing adsorption
 - TSA Temperature –swing adsorption

PSA, VSA, PVSA, TSA

Moving bed concepts TSA

Why 3D-printed adsorbents?

- CO₂ capture processes using solid adsorbents can have low energy requirements, but have often huge footprints!
- One way to lower the process footprint is to:
 - Increase gas flow, and/or
 - shorten the cycle time
- This will require lower pressure
 drop and sharper mass-transfer
 through the adsorbent bed.

Adsorption equilibria: Single component and ternary isotherms

- Single component CO₂ and H₂O isotherms from volumetric apparatus
 - Acceptable CO₂ capacity: 0.7 mol/kg at 0.15 bar and 363 K
 - Heat of adsorption: -111 kJ/mol CO₂ and -39 kJ/mol H₂O
- Ternary CO₂ (15% CO₂ 3% H₂O 82% N₂) isotherms from column breakthrough experiments
 - Water does not affect CO₂ adsorption

Adsorption kinetics: Column breakthrough experiments

- Column breakthrough (dynamic experiment) at different flow rates
 - Empty column runs to estimate system dead volume
 - Packed column runs followed by empty column tests

8

Minimize residual between experiments and model by fitting mass transfer co-efficient

A real case: post-combustion coal fired power plant

SINTEF

Feed gas: 15% CO_2 5% H_2O 80% N_2 , 363 K, 1 bar Assumptions

- CO₂ adsorption in un-affected by water (same as pure component adsorption)
- H₂O isotherm described by competitive dual-site
 Langmuir isotherm
- Nitrogen is considered inert
- Mass transfer-coefficients are estimated from breakthrough experiments

Pellet vs 3D printed adsorbent properties Diameter of pellet = 2 mm

Diameter of the 3D printed adsorbent = 0.1 m Channel width of the 3D printed structure = 0.3 mm

Pressure drop correlation: Pellets¹

3D printed²

 $\frac{-dP}{dZ} = 3.84 \frac{v_{channel} \mu}{d_{channel}^2}$

Pressure drop measured in literature³ also used to demonstrate improvement in performance

¹ Nikolic and Kikkinides Adsorption (**2015**) 21:283–305

² Patton et al., *Chem Eng Res Des*, 82(A8): 999–1009

³ Rebelo et al., Chemical Engineering & Processing: Process Intensification 127 (2018) 36–42

Process optimization

SINTEF

- Process performance defined by
 - CO₂ purity (>95%), CO₂ recovery (>90%), specific energy and productivity
 - Variables affecting performance are: step durations, pressures and feed flow rates
 - Aim :
 - To identify optimum operating conditions with minimum specific energy and maximum productivity.
 - To compare the performance of 3D printed adsorbents with reference pellets with same capacity.
- Genetic algorithm based optimization to obtain best performance

Results of the optimization

 Improvement in productivity observed with 3D printed materials due to lower pressure drop

SINTEF

11

Final remarks

- Amine grafted silica showed good capacity un der both dry & wet conditions at temperatures around 70-100 °C.
- VSA process optimization show that improvements in both process productivity and energy consumption can be obtained with 3D printed adsorbents compared to standard pelletized sorbents.
- The improved performance is mainly a consequence of lower pressure drop for an optimized 3D-printed structure compared to pellets
- Further work:
 - Improve fabrication procedure for the 3D-printed sorbents!
 - Measure pressure drop across the 3D printed adsorbent and perform rigourous optimization
 - Study the effect of water vapour at higher partial pressures

Acknowledgements

The ACT 3D-CAPS project # 271503 has received funding from RVO (NL), RCN (NO), UEFISCDI (RO), and is cofunded by the CO₂ Capture Project (CCP) and the European Commission under the Horizon 2020 programme ACT, Grant Agreement No 691712

