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Why CO2 capture by solid adsorbents? 

• A good solid adsorbent is a high 

surface area material with high 

physical and chemical stability under 

the relevant conditions, that 

• can fast adsorb significant amounts of CO2 

selectively over the other gases present, 

and, 

• can fast release CO2 either by lowering the 

partial pressure of CO2 or by heating the 

adsorbent.  

 

In principle – low energy requrements for 

regeneration ! 

Mostly – low    environmental impact 
3 



• In a process utilizing solid 

adsorbents, the solid adsorbent 

material is operating between an 

adsorpion phase and a desorption 

(regeneration) phase, either by 

moving the powder between 

different zones, or by changing the 

atmosphere around the solid 

adsorbent: 

• PVSA - Pressure-vacuum swing 

adsorption 

• TSA - Temperature –swing adsorption 
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Why CO2 capture by solid adsorbents? Contd… 

Moving bed concepts 
TSA 

Multiple fixed bed concepts: 
PSA, VSA, PVSA, TSA 



• CO2 capture processes using 

solid adsorbents can have low 

energy requirements, but have 

often huge footprints! 

• One way to lower the process 

footprint is to: 

• Increase gas flow, and/or 

• shorten the cycle time 

• This will require lower pressure 

drop and sharper mass-transfer 

through the adsorbent bed.  
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Why 3D-printed adsorbents? 



6 

How 3D-printed adsorbents? 

3D printing of 
foam structure 

Optimized 3D 
foam model  

Grafting amine 
moieties 

Thermal post-
treatment  

Testing in 
automated setup 



• I collect from Max…. 
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Adsorption equilibria: Single component and ternary 
isotherms 

 Single component CO2 and H2O isotherms from volumetric apparatus  

 Acceptable CO2 capacity: 0.7 mol/kg at 0.15 bar and 363 K 

 Heat of adsorption: –111 kJ/mol CO2 and -39 kJ/mol H2O  

 Ternary CO2 (15% CO2 3% H2O 82% N2) isotherms from column breakthrough experiments 

 Water does not affect CO2 adsorption 
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Adsorption kinetics: Column breakthrough experiments 
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 Column breakthrough (dynamic experiment) at different flow rates 

 Empty column runs to estimate system dead volume 

 Packed column runs followed by empty column tests  

 Minimize residual between experiments and model by fitting mass transfer co-efficient 
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A real case: post-combustion coal fired power plant 

Feed gas: 15% CO2 5% H2O 80% N2, 363 K, 1 bar 
Assumptions 

 CO2 adsorption in un-affected by water (same as 
pure component adsorption) 

 H2O isotherm described by competitive dual-site 
Langmuir isotherm 

 Nitrogen is considered inert 

 Mass transfer-coefficients are estimated from 
breakthrough experiments 

Pellet vs 3D printed adsorbent properties 
Diameter of pellet = 2 mm 
 
Diameter of the 3D printed adsorbent = 0.1 m 
Channel width of the 3D printed structure = 0.3 
mm 
 
Pressure drop correlation: 
Pellets1 

 
 
3D printed2 

 
 
 
Pressure drop measured in literature3 also used to 
demonstrate improvement in performance 
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1 Nikolic and Kikkinides Adsorption (2015) 21:283–305 
2 Patton et al., Chem Eng Res Des, 82(A8): 999–1009 
3 Rebelo et al.,Chemical Engineering & Processing: Process Intensification 127 (2018) 36–42 
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Process optimization 
 Process performance defined by 

 CO2 purity (>95%), CO2 recovery (>90%), specific energy 
and productivity 

 Variables affecting performance are: step durations, 
pressures and feed flow rates 

 Aim :  
 To identify optimum operating conditions with 

minimum specific energy and maximum productivity. 
 To compare the performance of 3D printed adsorbents 

with reference pellets with same capacity. 
 Genetic algorithm based optimization to obtain best 

performance 

CO2 purity =
mass CO2 

in
 
evac

total mass evac
 CO2 recovery =

mass CO2 
in

 
evac

mass CO2 
in feed

 

Specific energy=
Compression+Evacuation energy

mass CO2 
in evacuation

 

Productivity =
mass CO2 

in evacuation

volume of adsorbent X cycle time
 



Results of the optimization 
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• Improvement in productivity observed with 3D printed materials due to lower 

pressure drop 



 Amine grafted silica showed good capacity un der both dry & wet conditions at 
temperatures around 70-100 °C. 

 VSA process optimization show that improvements in both process productivity and 
energy consumption can be obtained with 3D printed adsorbents compared to 
standard pelletized sorbents. 

 The improved performance is mainly a consequence of lower pressure drop for an 
optimized 3D-printed structure compared to pellets 

 Further work: 

 Improve fabrication procedure for the 3D-printed sorbents! 

 Measure pressure drop across the 3D printed adsorbent and perform rigourous 
optimization 

 Study the effect of water vapour at higher partial pressures 
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Final remarks 
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