The 10<sup>th</sup> Trondheim Conference on CO<sub>2</sub> Capture, Transport and Storage



# A Heat Integrated Solid-sorbent Based Fluidized Bed Process for Post-Combustion CO<sub>2</sub> Capture

**Yong-Ki Park**<sup>\*1</sup>, Hwimin Seo<sup>1</sup>, Kiwoong Kim<sup>1</sup>, Da Young Min<sup>1</sup>, Hye Mi Kim<sup>1</sup>, Dae Jin Kim<sup>1</sup>, Chungwoo Lee<sup>1</sup>

*Minkee Choi<sup>2</sup>, Woosung Choi<sup>2</sup>, Kyungmin Min<sup>2</sup>, Chaehoon Kim<sup>2</sup>* 

<sup>1</sup>Korea Research Institute of Chemical Technology, Daejeon, South Korea <sup>2</sup>Korea Advanced Institute of Science and Technology, Daejeon, South Korea

2019.06.19



Introduction

**Process description** 

Features of developed solid sorbent

Process demonstration

Summary

## Dry sorption vs. amine scrubbing





Advantage of dry-sorbent process

Low degradation / corrosiveness / volatility

Main issue

1) Difficult heat exchange between lean/rich sorbents

2) Low fluidity

Dry sorption process developed by KRICT & KAIST

Low temperature process with sensible heat exchange

• Epoxy functionalized sorbent with a low heat of absorption

**KCRC**<sup>®</sup>



4





### (KAIST) Epoxybutane-functionalized PEI (EB-PEI)

- Epoxy-functionalization of primary amines in PEI
  - $\rightarrow$  Resistant to urea formation (less steam demand in a desorption bed)
  - $\rightarrow$  Low heat of CO<sub>2</sub> absorption



• Nature Communications, 2016, 7, 12640. • Patents (KR 10-1738954, 10-1967508, US 15644924)

**C**%

#### (KAIST) Oxidation stability of EB-PEI





- Solid sorbents meet hot O<sub>2</sub>-containing gas in a fluidized bed (standpipe & heat exchanger)
  - →  $O_2$  stability is very critical to successful operation of dry sorbent fluidized bed processes.
- Chelators for metal impurity & hydroxylation of PEI retard oxidation of the sorbent.
  - Nature Communications, 2018, 9, 1-7
  - Patents (KR 10-2017-0152380, US 2019-0143299)



#### Oxidative aging condition (simulated flue gas)

- 15% CO<sub>2</sub>, 10% H<sub>2</sub>O, 3% O<sub>2</sub>, balanced with N<sub>2</sub> at 110°C for 30 day

#### (KAIST) Egg-shell type adsorbent with SO<sub>2</sub> resistance



#### Egg-shell type CO<sub>2</sub> adsorbent

- Core : Partially epoxidated PEI
  - High CO<sub>2</sub> working capacity
  - Highly regenerable without the urea formation
  - Irreversible adsorption of SO<sub>2</sub>
    - (SO<sub>2</sub>-induced degradation)

- Shell : Fully epoxidated PEI (tertiary amines)
  - Selective adsorption of SO<sub>2</sub> over CO<sub>2</sub>
  - SO<sub>2</sub> can be easily desorbed by increasing temperature (110 °C)
  - Protects core-amine (0.37EB-PEI) from the SO<sub>2</sub>-induced degradation

KCP



\*  $Q_{CO2}$  : CO<sub>2</sub> adsorption capacity

| Sample                                  | CO <sub>2</sub> adsorption | on capacity (wt%) | 0 (50  tracted)/0 (frach)*                              |
|-----------------------------------------|----------------------------|-------------------|---------------------------------------------------------|
|                                         | Fresh                      | After 500 cycles  | $Q_{CO2}(SO_2 \text{ (realed)}) Q_{CO2}(\text{resh})^2$ |
| EB-PEI/TSP-SiO <sub>2</sub>             | 6.2                        | 3.1               | 0.50                                                    |
| EB-PEI/TSP-SiO <sub>2</sub> -core shell | 5.2                        | 5.0               | 0.96                                                    |

**~**%

#### **Development of spherical sorbents**

# **KCRC**<sup>®</sup>



\*150 mbar CO<sub>2</sub>

## **Concept of solid-solid heat exchanger**



• Patent-registered (KR 10-1571966, US 9,694,312)

**Recover sensible energy through direct solid-solid heat exchange** 

(△T: 65 → 20 °C)

- %

#### **Operation result – Solid heat exchanger**



#### Solid-Solid Heat Exchanger Temperature Profile



|                                    | w/o<br>Solid HX | w/<br>Solid HX | 0.5 MW<br>(Target) |
|------------------------------------|-----------------|----------------|--------------------|
| MTA (°C)                           | 65              | 45             | 30                 |
| Sensible E. (GJ/tCO <sub>2</sub> ) | 2.6             | 1.9            | 1.3                |

• 20 °C recovered by solid heat exchanger

ightarrow 30% sensible energy reduction

• MTA (minimum temp. approach): 45 °C

## Sorbent stability test and cost







| Solvent Type                    | MEA (Fluor) | KS-1 (MHI)  | Benfield (UOP) | EB-PEI                             |
|---------------------------------|-------------|-------------|----------------|------------------------------------|
| Make up (kg/t-CO <sub>2</sub> ) | 1.5         | 0.35 ~ 0.40 | 2.4            | <b>*1.14</b><br>(0.5% make-up/day) |
| Cost (USD/kg)                   | 1.2         | 16.5        | -              | 12<br>(raw material cost)          |

\*Basis: attrition loss 0.5wt%/day, sorption working capacity 5wt%



- Improving MTA by -10 °C −−−−► Energy reduced by 0.7 GJ/t-CO<sub>2</sub>
- Increasing working capacity by +1wt% ----► Energy reduced by 0.5 GJ/t-CO<sub>2</sub>

**~**%

| Project Site                     | Dae-gu Dyeing Industrial Center, South Korea     |  |  |
|----------------------------------|--------------------------------------------------|--|--|
| Project Site                     | (75 MWe PC Power Plant)                          |  |  |
| CO <sub>2</sub> Capture Capacity | 2,000 Nm <sup>3</sup> /hr (~0.5 MWe Power Plant) |  |  |
| Start-up Date                    | From October 2019                                |  |  |

#### **Reference Power Plants**



#### **CO<sub>2</sub> Capture Plant EPC Site**





### 0.5 MWe pilot plant – reactor design

**KCRC**<sup>®</sup>



• Reactor : plate-type fluidized bed  $\rightarrow$  easy scale-up by modulation

## 0.5 MWe pilot plant – CFD analysis



- Refer to distributor in CFBC (equipped with Plate-type Super Heater)
- Distributor and reactor outlet designs are under tuned through CFD simulation

#### **Current status of the process development**



20 Nm<sup>3</sup>/hr scale operation with restricted heat exchange



100 Nm<sup>3</sup>/hr scale operation with improved heat exchange





0.5MW pilot test with real flue gas (Target : 2.5 GJ/tCO<sub>2</sub>)



Enhanced SO<sub>2</sub> stability

#### **Summary**



• A circulating fluidized bed process with a novel solid heat exchanger was developed and it

shows 30 % of sensible heat recovery from lean sorbent stream.

- Amine impregnated sorbent with a low heat of sorption was developed and optimized to prevent from thermal and oxidative degradation.
- 1 month continuous operation demonstrates its stability.

- Bench scale process of 20 Nm<sup>3</sup>/hr and 100 Nm<sup>3</sup>/hr were constructed and operated.
- Its performance shows 3.4 GJ/t-CO<sub>2</sub> and 4.5 wt% of sorption working capacity.
- 2,000 Nm<sup>3</sup>/hr (0.5 MW scale) CO<sub>2</sub> capture plant is under constructed and the startup will be from October 2019.



<u>Reactor development</u> *Prof.* Hyung Hee Cho (Yeonsei Univ.) Amine based sorbent development Prof. Minkee Choi (KAIST) Prof. Young Soo Ko (Kongju Natl. Univ.)

<u>Funding</u> : This work was supported by the **Korea CCS R&D Center** (KCRC) grant funded by the Korea government (Ministry of Science, ICT & Future Planning, no. **2014M1A8A1049248**)



**Questions & Comments ?**