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Amine Scrubbing Process Solid Sorbent-based Process

 Advantage of dry-sorbent process

Low degradation / corrosiveness / volatility

1) Difficult heat exchange between lean/rich sorbents 

2) Low fluidity 

 Main issue

Absorber Desorber

Hot Rich
Solvent

Cold Rich
Solvent

Hot Lean
Solvent

Cold Lean
Solvent

Flue Gas

Exhaust Gas

CWR

CW

CO2

Steam Feed Condensate

Reboiler

Condenser

△T=5-10 oC ?

Dry sorption vs. amine scrubbing
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Dry sorption process developed by KRICT & KAIST

• Epoxy functionalized sorbent 

with a low heat of absorption

• Low temperature process with sensible heat exchange

+

KRICT
(Dr. Yong Ki Park)

- Process development
- Sorbent shaping  & scale-up

KAIST
(Prof. Minkee Choi)

- Sorbent development
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(KAIST) Epoxybutane-functionalized PEI (EB-PEI) 

Sample
Heat of adsorption

[GJ / ton-CO2]

PEI 1.85

0.18EB-PEI 1.73

0.35EB-PEI 1.47

0.49EB-PEI 1.25

• Epoxy-functionalization of primary amines in PEI

 Resistant to urea formation (less steam demand in a desorption bed)

 Low heat of CO2 absorption

• Nature Communications, 2016, 7, 12640.     • Patents (KR 10-1738954, 10-1967508, US 15644924)
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(KAIST) Oxidation stability of EB-PEI

• Nature Communications, 2018, 9, 1-7

• Patents (KR 10-2017-0152380, US 2019-0143299)

• Solid sorbents meet hot O2-containing gas in a 

fluidized bed (standpipe & heat exchanger)

 O2 stability is very critical to successful operation 

of dry sorbent fluidized bed processes.

• Chelators for metal impurity & hydroxylation of PEI 

retard oxidation of the sorbent.



(KAIST) Improvement of oxidation stability
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Oxidative aging condition (simulated flue gas)

- 15% CO2, 10% H2O, 3% O2, balanced with N2 at 110°C for 30 day

~50 times slower deactivation



(KAIST) Egg-shell type adsorbent with SO2 resistance
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• Shell : Fully epoxidated PEI (tertiary amines)

 Selective adsorption of SO2 over CO2

 SO2 can be easily desorbed by increasing 

temperature (110 oC)

 Protects core-amine (0.37EB-PEI) from the 

SO2-induced degradation

Partially epoxidated 

PEI (core)

Fully epoxidated

PEI (shell)

SOx

CO2

SOx

SOx SOx

SOx

CO2

CO2

CO2

CO2

CO2

TSA

Egg-shell type CO2 adsorbent

SOx
SOx

CO2

CO2

SOx

SOx

SOx

SOx

SOx

• Core : Partially epoxidated PEI

 High CO2 working capacity

 Highly regenerable without the urea formation

 Irreversible adsorption of SO2

(SO2-induced degradation)

ACS Appl. Mater. Interfaces, 2019, 11, 16586−16593



(KAIST) Cyclic stabilities at SO2-containing environment
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Cyclic number

Sample
CO2 adsorption capacity (wt%)

QCO2(SO2 treated)/QCO2(fresh)*
Fresh After 500 cycles

EB-PEI/TSP-SiO2 6.2 3.1 0.50

EB-PEI/TSP-SiO2-core shell 5.2 5.0 0.96

EB-PEI/TSP-SiO2

EB-PEI/TSP-SiO2-core shell

* QCO2 : CO2 adsorption capacity

• Ads.: 60 oC, 10% H2O, 15% CO2, 50 ppm SO2 balanced with He

• Des.: 110 oC, 100% CO2

• Cycle time: 10 min
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Reaction between 
epoxide & PEI

Silica support 
spray-drying

Impregnation
& Drying

Sorbent properties

Abs. capacity (wt%) 7.0*

Specific heat (J/g·K) 1.4

Heat of Abs. (GJ/tCO2) 1.47

Mean particle size (m) 150

Attrition Index 2.5

*150 mbar CO2

Development of spherical sorbents

• capable of 500 kg/month manufacture
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Concept of solid-solid heat exchanger 

Recover sensible energy through direct solid-solid heat exchange 

(△T: 65  20 °C)

Regeneration Temperature (=110 °C)

Absorption Temperature (=45 °C)

T=65°C

T=20°C

Sensible 
Heat Exchange

• Patent-pending (EU 14 762 615.4)

• Patent-registered (KR 10-1571966, US 9,694,312)

100 Nm3/hr bench-scale configuration
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• 20 oC recovered by solid heat exchanger 

→ 30% sensible energy reduction

• MTA (minimum temp. approach): 45 oC

w/o
Solid HX

w/
Solid HX

0.5 MW
(Target)

MTA (oC) 65 45 30

Sensible E. (GJ/tCO2) 2.6 1.9 1.3

Solid-Solid Heat Exchanger Temperature Profile

HX-111

HX-121

Hot Side Cold Side

Operation result – Solid heat exchanger 
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Solvent Type MEA (Fluor) KS-1 (MHI) Benfield (UOP) EB-PEI

Make up (kg/t-CO2) 1.5 0.35 ~ 0.40 2.4 *1.14
(0.5% make-up/day)

Cost (USD/kg) 1.2 16.5 - 12 
(raw material cost)

*Basis: attrition loss 0.5wt%/day, sorption working capacity 5wt%

Sorbent stability test and cost

Regenerator T.

Sorption T.

Sorption DP

Regenerator DP

Operation time (hrs) Operation time (hrs)

• Bench-scale operation to test stability
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Slope= -2.75 x 10-4
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Critical Factors affecting thermal energy
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(3.4 GJ/t-CO2)
100 Nm3/hr

(2.5 GJ/t-CO2)
0.5 MW Pilot

Reference Solid-sorbent
Process

Current

Target

• Improving MTA by -10 oC

• Increasing working capacity by +1wt%

Energy reduced by 0.7 GJ/t-CO2

Energy reduced by 0.5 GJ/t-CO2

Initial operation
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Process scale-up to 0.5 MWe pilot plant

CO2 Capture Plant EPC SiteReference Power Plants

Plant Layout

Project Site
Dae-gu Dyeing Industrial Center, South Korea

(75 MWe PC Power Plant) 

CO2 Capture Capacity 2,000 Nm3/hr (~0.5 MWe Power Plant)

Start-up Date From October 2019
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0.5 MWe pilot plant – reactor design

• Reactor : plate-type fluidized bed  easy scale-up by modulation

Absorber Desorber Units

Reactor

Heat duty 417 360 kW

Overall U 35.6 65.1 W/m2K

Designed Area 613 452 m2

Solid

HX

Heat duty 127 113 kW

Overall U 15 15 W/m2K

Designed Area 212 156 m2

Plate

Size

Depth 25 10 mm

Width 570 570 mm

Number of 

Plates
20 15 EA

Footprint
1.15 × 0.

63 × 35

0.64 × 0.

63 × 35 
m3

(tube side)
Riser

(shell side)
Steam/CW

(tube side)
Riser

(shell side)
Dense Bed

Reactor

Solid Heat Exchanger
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• Refer to distributor in CFBC (equipped with Plate-type Super Heater) 

• Distributor and reactor outlet designs are under tuned through CFD simulation

• Distributor • Reactor Outlet

0.5 MWe pilot plant – CFD analysis 
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100 Nm3/hr scale 
operation with improved 
heat exchange

Current status of the process development

20 Nm3/hr scale operation 
with restricted heat 
exchange

Enhanced SO2 stability

EB-PEI 

2018201720142012 2019

current

2020

Enhanced O2 stability

0.5MW pilot test with 
real flue gas
(Target : 2.5 GJ/tCO2)

Manufacture of 6 tons 
of sorbent for pilot test
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Summary

 A circulating fluidized bed process with a novel solid heat exchanger was developed and it 

shows 30 % of sensible heat recovery from lean sorbent stream.

 Amine impregnated sorbent with a low heat of sorption was developed and optimized to 

prevent from thermal and oxidative degradation.

 1 month continuous operation demonstrates its stability.    

 Bench scale process of 20 Nm3/hr and 100 Nm3/hr were constructed and operated. 

 Its performance shows 3.4 GJ/t-CO2 and 4.5 wt% of sorption working capacity.

 2,000 Nm3/hr (0.5 MW scale) CO2 capture plant is under constructed and the startup will 

be from October 2019.



20

H N KAT

Y UO

Questions & Comments ?

Reactor development
Prof. Hyung Hee Cho (Yeonsei Univ.)
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