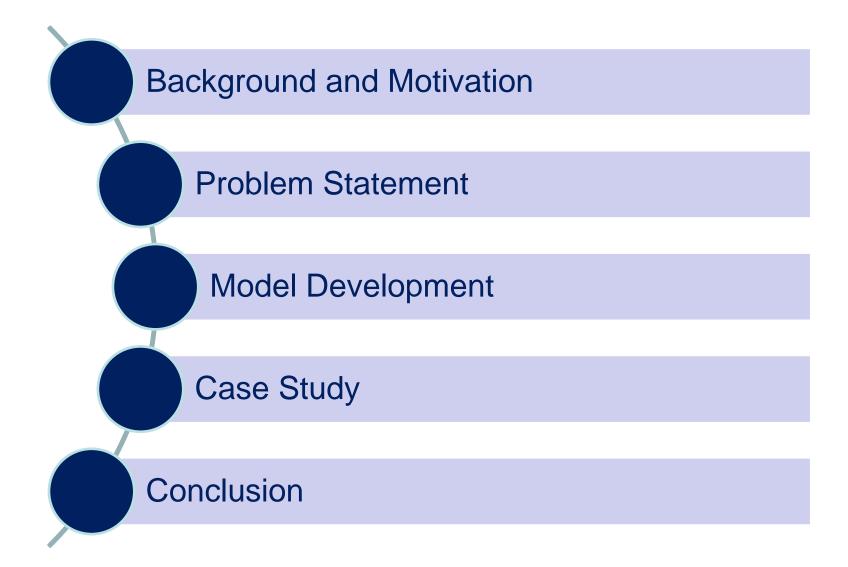
Optimisation of post combustion carbon dioxide capture by use of a facilitated carrier membrane

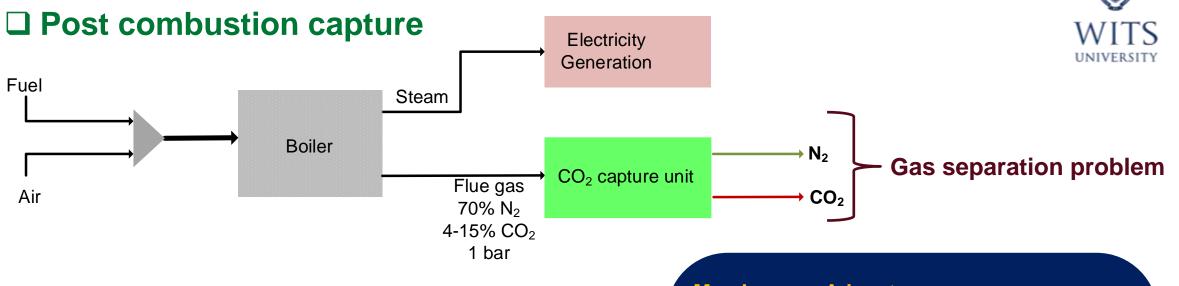
Natsayi Chiwaye, Thokozani Majozi and Michael Daramola,*

School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa

*Corresponding author: <u>michael.daramola@wits.ac.za</u>; Tel +27117177536



University of the Witwatersrand, Johannesburg


www.wits.ac.za

Outline

Background and Motivation

Draw backs of chemical absorption by amines

- Huge energy demand during regeneration of amine
- Corrosive to equipment
- The solvent degrades in the presence of common flue gas

Other technologies

- Adsorbents
- > Membranes

Membranes: Advantages

- Less energy intensive
- No moving parts hence low maintenance
- Relatively more environmentally friendly

Membranes: Challenges

> Driving force

Low CO₂ concentration in flue gas, low feed pressure

- Need for membranes with high CO2 permeance
- And selectivity

□Fixed site carrier facilitated membrane

- ✤ Transport of CO₂ across the membrane is due to diffusion and the reversible reaction of CO₂ and NH₂ groups in the presence of H₂O.
- FSC membranes enhanced permeance and increased CO₂ selectivity
- Therefore results in lower cost of CO₂ capture

□FSC membrane application considerations

- Permeance highly dependent on relative humidity
- Water vapour as sweep is suitable
 Water highly permeable

Background and Motivation

	Hussain & Hagg 2010	He & Hagg (2014)	He et al., (2015)	Current Study
Process flow	Predetermined	Predetermined	Predetermined	Superstructure based model
Membrane stages	2	2	2	Multi
Components	4	4	2	4
Pressure ratio	fixed	fixed	fixed	Variable
Relative humidity	-	fixed	-	variable
Recycle stream	-	-	-	\checkmark
Permeate pressure generation	Vacuum & sweep	vacuum	vacuum	Vacuum & sweep gas
CO ₂ /H ₂ O selectivity	4.4e8	1	-	1

Aim & Objectives

🛛 Aim

To develop a mathematical model for the optimal design of FSC process flow system minimising the total annualized cost in order to further reduce the cost of CO₂ capture by FSC membrane.

Objectives

- To develop a comprehensive FSC superstructure
- To determine the effect of varying pressure ratio on the total cost of CO₂ capture
- To investigate the effect of permeate pressure generation by vacuum and, or sweep gas
- The feasibility of this proposed system is evaluated by optimizing the process based on the minimum total annualised cost of capturing CO₂.

Given:

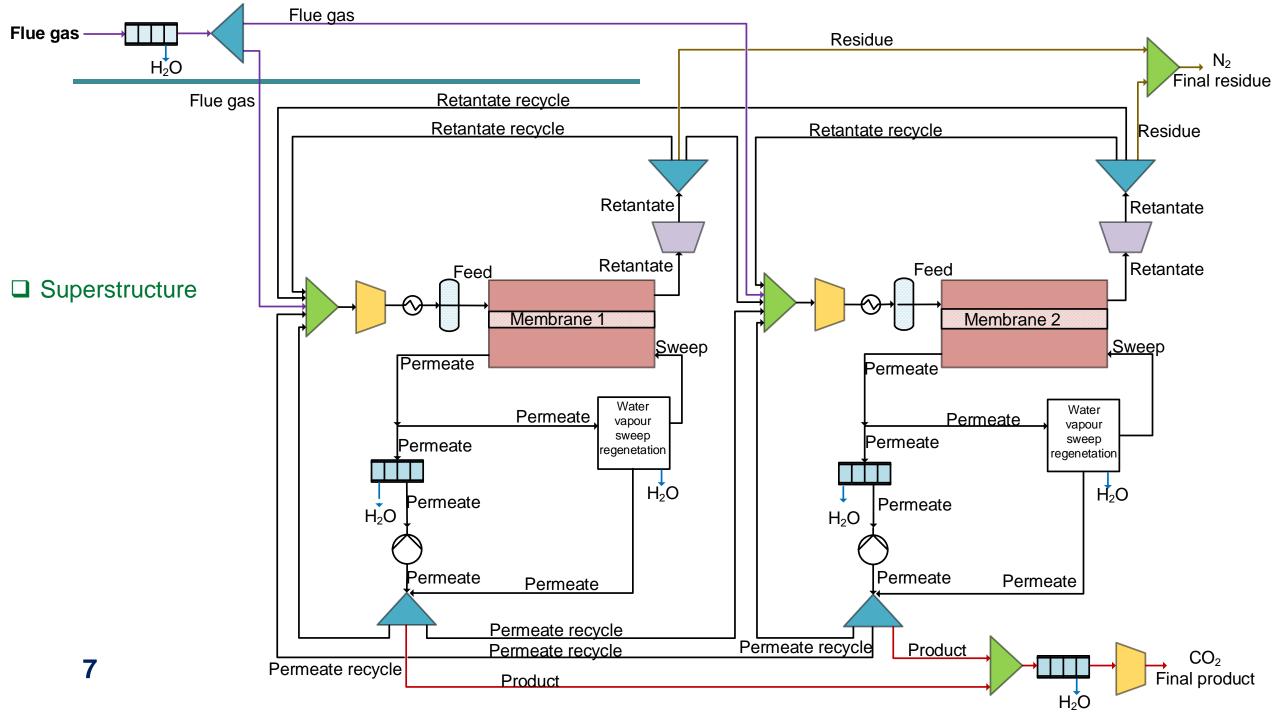
- Flue gas of known flowrate, components, temperature and pressure
- Desired permeate purity and desired capture ratio
- Permeance and selectivity of the membrane

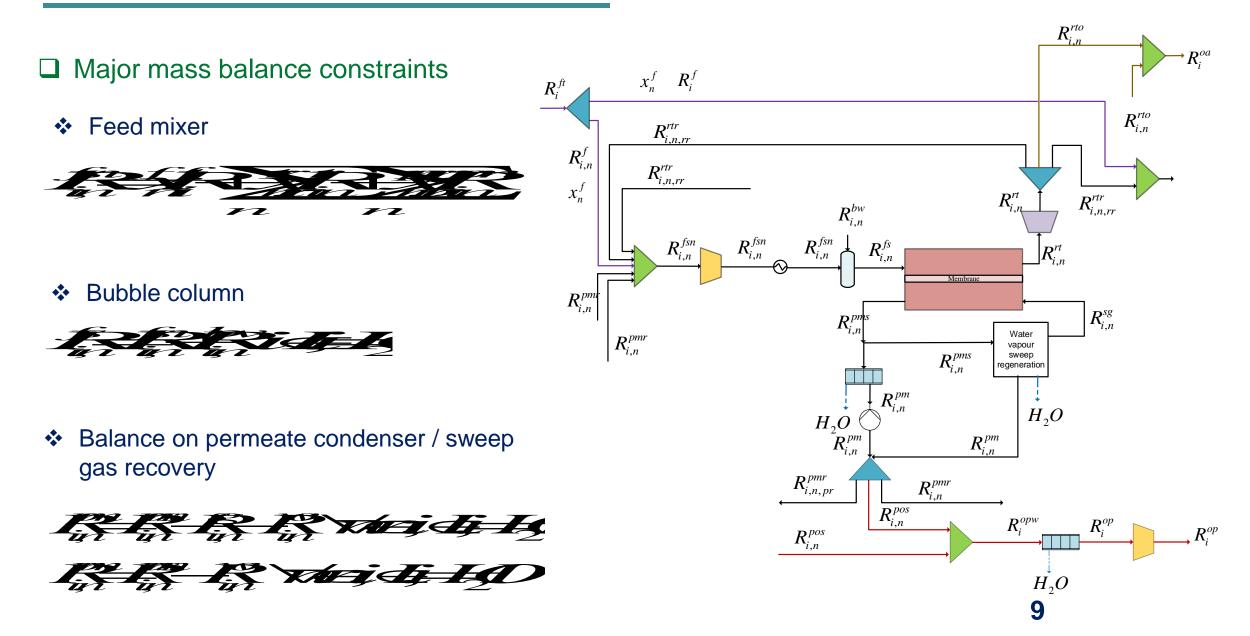
Determine:

The membrane process system that minimises the total annualised costs for the carbon capture for target separation factor.

- The optimum operating and design conditions of the membrane units:
 - ➢ flowrate of streams,
 - \succ area of the membrane,
 - > permeate and retentate pressure,
 - Relative humidity
 - ➤ sweep gas flow rate and
 - > compressor and vacuum pumps power consumption.

6

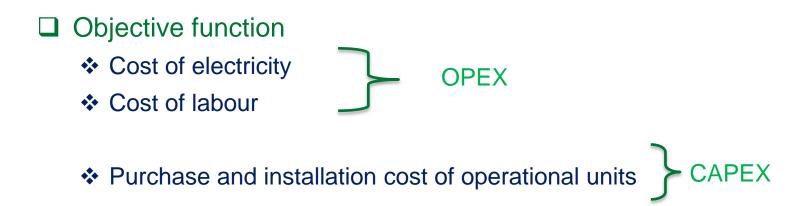

□ Major assumptions


- Concentration polarisation on the membrane is negligible
- ✤ The pressure drop along the membrane is negligible.
- The overall permeance of component is not affected by pressure nor by concentration variation
- Counter-current flow is considered.

Constraints

- ✤ Gas permeation
- Mass balances
- Energy consumption of compressors, vacuum pumps and energy recovered by expanders
- ✤ Heat transfer area
- Separation targets- capture ratio and product purity
- Objective function

Permeate pressure range for vacuum


Permeate pressure range for sweep

□ Allowable membrane area

□ Relative humidity

□ Sweep gas flow rate

Separation targets- capture ratio and product purity
 Target capture ratio
 Desired purity

Case Study

Case study (He & Hägg, (2014))

- Techno economic feasibility study of CC by FSC membrane
- Predetermined two membrane stage process flow
- Cascading process flow, no recycle streams

Parameter	Value
CO ₂ /N ₂ selectivity	135
CO ₂ /H ₂ O selectivity	1
CO_2/O_2 selectivity	30

	Parameter		Value
	Flue gas flow rate (kmol/s)		26.6111
	Flue gas temperature (°C)		50
S	Mole fractions of components	CO ₂	0.137
		N_2	0.7289
		H ₂ O,	0.0365
		O ₂	0.0973
è	Membrane Temperature (°C)		35
5	Membrane permeance of CO ₂ (kmol/m ² bar.s)		2.48E-05
	Permeate pressure (bar)		0.25
	Retentate pressure (bar)		2
)			

	Scenario 1	Scenario 2	Scenario 3	Scenario 4
Process flow	Predetermined	Model determined	Model determined	Model determined
Membrane stages	2	3	3	3
Pressure ratio	Parameter	Variable	Variable	Variable
Relative humidity	Parameter	variable	Variable	variable
Permeate pressure	Vacuum	Vacuum	Combination	Sweep gas
Recycle streams	-	\checkmark	\checkmark	\checkmark

Results & Discussion

Scenario	1	2	3	4
Number of mem stages	2	3	3	3
Capture ratio (%)	90	90	90	90
CO ₂ product purity (%)	95	95	95	95
TAC (M \$)	174,7	144.1	141.8	144.4
Operating costs, (M \$)	46.5	44.8	50.3	52.6
Capital costs (M \$)	128,2	99.6	91.5	91.7
Total membrane (Mm ²)	4.05	1.75	1.83	2.04
Total net power (MW)	154,6	149.0	167.2	176.1
Total power (MW)	208	224	217.5	223.7
Power recovered by	ED 4		70.0	47.0
expander (MW)	53.4	75.1	76.9	47.6

Scenario	1	2	3	4
Specific membrane area (m²/tCO ₂ .h)	7708.1	3348.2	3526.8	3911.0
Heat transfer area (m²)	78605.9	112319.2	67405.9	34932.7
CO ₂ capture rate (ton/h)	521	521	521.3	521.3
Specific power consumption (kWh /ton)	296	286	321	292
Specific energy (GJ/tCO ₂)	1.065	1.03	1.15	1.22
TLC (\$/tCO ₂)	44.7	36.8	36.3	36.9
% saving on TLC	-	17.6	18.7	17.4

Integration and optimisation will help in making the CCS by FSC membranes more economical

- Combination of sweep and vacuum give optimum flow
- Membrane area decrease by 56.7%

✤Cost of capture is reduced by 17%.

Thank you

Natsayi Chiwaye, Thokozani Majozi and Michael Daramola*

School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa

*Corresponding author: <u>michael.daramola@wits.ac.za</u> Tel +2711 717 7536