

10th Trondheim CCS Conference, 18th-19th June 2019, Trondheim, Norway

Integration of a flexible Calcium Looping CO₂ capture system in a back-up power plant

Borja Arias, Yolanda A. Criado, J. Carlos Abanades

Spanish Research Council CSIC-INCAR, Francisco Pintado Fe 26, 33011, Oviedo, Spain

abanades@incar.csic.es

Outline

The need for flexible CO₂ capture systems

Fossil fuel power plants undergo flexible operation with load changes, partial load operation or turn off periods due to the increasing amount of renewable energy

PROBLEM:

CO₂ CAPTURE TECHNOLOGIES ARE INTEGRATED SYSTEMS WITH LOW FLEXIBILITY AND HIGH CAPITAL INVESTMENT.

OPERATION WITH LOW CAPACITY FACTORS WOULD LEAD TO HIGH CO₂ COST BECAUSE OF WASTE OF CAPITAL

Approaches to address flexibility in existing CO₂ capture technologies:

- □ Post-combustion using liquid solvent → Storage tanks of solvent
- □ Oxy-combustion → Cryogenic storage of O₂
- □ Pre-combustion → Storage of hydrogen/polygeneration

Calcium looping for post-combustion CO₂ capture

ADVANTAGES OF CO₂ CAPTURE BY CAL

- Based on CFB technology
- □ Low energy penalty → Additional power produced
- □ Use of CaO as sorbent \rightarrow Rich CaO purge
- ☐ Energy penalties: 6-9 net points
- □ Developed up to TRL 6-7

www.flexical.eu

TO IMPROVE THE FLEXIBILITY OF CO₂ CAPTURE BY DEVELOPING NOVEL CALCIUM LOOPING PROCESS INTEGRATED WITH ENERGY STORAGE SYSTEM

Outline

Flexible CaL for back-up power plants

Calcium looping CO_2 capture system for back-up power plants. Y. A. Criado, B. Arias and J. C. Abanades; *Energy Environ. Sci.*, **2017**, 10, 1994

CaL for back-up power: integration of the carbonator

<u>Carbonator</u> (New) is an adiabatic reactor. It is decoupled from the calciner and is fed with stored CaO following the intermittent power plant operation modes

Thermal integration of the carbonator block

PRE-HEATING

HEAT RECOVERED FROM GAS AND SOLIDS OUTLET STREAMS:

In an additional steam cycle (SC)COE increases for very low CF

Integrated within the power plant steam cycle

Allows reducing the coal thermal input for the maximum SC capacity \rightarrow Reduces CO_2 flow \rightarrow Lower FlexiCal size required

P: Pressure (bar) REHEATER T: Temperature (°C) RH P= 0.05 P= 280.0 T= 31 HP TURBINE IP TURBINE LP TURBINE SH2 T= 447 T= 334 P= 0.9 P= 25.0 ECO BOILER FEED P= 335.0 DNDENSER T= 174 FEEDWATER HEATERS DEAEREATOR LP FEEDWATER HEATERS

Replace bleedings to HP and LP feedwater heaters:

Reduced modifications in the existing power plant \rightarrow Low Capex

Integration of the oxy-calciner block

HEAT RECOVERED FROM GAS AND SOLIDS OUTLET STREAMS TO RUN A SMALL **SUBCRITICAL STEAM CYCLE**

Enough power available as to cover the electricity demand in CPU, ASU and auxiliaries of the oxy-calciner block

Results for a case example

MAIN ASSUMPTIONS:

Existing power plant: 350 MW_e power plant (reference 777 MW_{th} for η =45%) operated under **CF=0.1**

Calcium looping: T_{Carb}=650°C, T_{Calc}=910°C, X_{ave}=0.35, E_{Carb}=0.9 and E_{Calc}=1

- □ 206 MW_{th} from the carbonator are recovered in the power plant steam cycle
- □ Thermal power plant input in the back up plant can be reduced by a 12%
- Due to the absence of bleeds there is a certain penalty (~3 net points) on the steam cycle efficiency.

- CaO can be stored at <u>156°C</u> and CaCO₃ at <u>207°C</u>
- □ Between 2000 and 25000 m³ of solids per operation day of the power plant are required
- □ A purge of 0.1 Mton is annually produced

- Only represents an <u>8% of the total thermal capacity</u> (66 MW_{th})
- □ 12.5 MW_e are produced in the associated steam cycle, being required about 11 MW_e in the ASU, CPU and auxiliaries
- □ Net OVERALL energy efficiency 28%.
- □ Net energy efficiency DURING PICK POWER with CO₂ capture: 42%

Cost analysis for the case example

AVOIDANCE COSTS ARE HIGH (190 $\$/t_{co2}$) BUT LESS THAN HALF OF THE COST OF AN EQUIVALENT REFERENCE CAPTURE SYSTEM WITH CF=0.1

- Standard CaL (as other "conventional" CO₂ capture technologies) heavily penalized for extremely low capacity factors mainly due to the CAPEX
- Thanks to the reduced oxy-calciner size and the low-cost storage silos costs below 0.2 \$/kWhe are estimated for retrofitting amortized coal power plants with a CF of just 0.1

TECHNOLOGY	TCR (\$/kWe)
Standard CaL	2450
FlexiCaL (15 days storage)	900

Outline

Conclusions

- □ Calcium looping is a CO₂ capture technology with a large flexibility potential by its integration with a CaO/CaCO₃ solid storage system, which allows very low CF.
- □ Heat from the carbonator block can be recovered in the existing power plant steam cycle, reducing up to 12% fuel consumption
- Oxy-calciner block can operate in steady state mode. ASU and CPU can be selfsustained power generation from calciner waste heat
- Energy penalty is high (overall net energy efficiency \sim 0.28) but energy is consumed during periods of low power demand, while 0.42 efficiency is retained during Back-up periods with CO₂ capture

10th Trondheim CCS Conference, 18th-19th June 2019, Trondheim, Norway

Integration of a flexible Calcium Looping CO₂ capture system in a back-up power plant

Borja Arias, Yolanda A. Criado, J. Carlos Abanades

Spanish Research Council CSIC-INCAR, Francisco Pintado Fe 26, 33011, Oviedo, Spain

abanades@incar.csic.es

