gti

ADVANCED MEMBRANE TECHNOLOGIES FOR CO₂ CAPTURE AND UTILIZATION

Howard S. Meyer, Shiguang Li, Naomi Klinghoffer, Travis Pyrzynski: GTI Yong Dong: Air Liquide Advanced Separations Miao Yu: Rensselaer Polytechnic Institute

June 2019

Trondheim CCUS Conference

Introduction to GTI

qt

- Research organization, providing energy and environmental solutions to the government and industry since 1941
- Facilities: 18 acre campus near Chicago

For additional information contact Markus Lesemann (Chicago) at MLesemann@gti.energy or Eric Lei (Beijing) at Elei@gti.energy

Experience: Advanced materials and innovative processes for energy and environmental relevant applications

Expertise on CCUS

- 1st Gen CO₂ capture technology CarboLock[™]: Currently in BP4 of piloting a 10 tonne/day CO₂ capture system at the National Carbon Capture Center (NCCC), targeting \$40/tonne of CO₂ captured, supported by US DOE
- 2nd & 3rd Gen technologies supported by US DOE targeting \$30-35/tonne of CO₂ captured

Gen	Project	Current scale	Cost target (per tonne of CO ₂ captured)
2 nd	GO-PEEK	Lab	\$35
3 rd	GO ²	Bench	\$30
3 rd	Rota-Cap	Bench	\$30
3 rd	Sorbent	Bench	\$30

 Four CO₂ utilization technologies (dry reforming, ebeam, DME production, and DMC production) supported by US DOE

1st Gen Technology: Hollow Fiber **Membrane Contactor (HFMC)**

Objectives: Build a 0.5 MW_e pilot-scale CO₂ capture system and conduct tests on flue gas at the National Carbon Capture Center (NCCC), and demonstrate a continuous, steady-state operation

B AIR LIQUIDE ALCO ALCO ACTION

6

Singular PEEK HFMC technology currently at 0.5 MW_e pilot scale development stage (DE-FE0012829)

ABSORPTION

PEEK made into hollow fibers with high packing density

NCCC PSTU solvent system (0.5 MW_e) GTI HFMC system (0.5 MW_e)

Plant constructed, installed and being tested at NCCC 12 m (L) x 7.5 m (W) x 3.5 m (H)

~2,000 GPU used in pilot

scale testing

2nd Generation Technology: GO-HFMC Hybrid Process

GO (graphene oxide): single-atomic layered, oxidized graphene

Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation Hang Li *et al. Science* **342**, 95 (2013); DOI: 10.1126/science.1236686

 Objectives: Develop a hybrid membrane process combining a graphene oxide (GO) gas separation membrane unit and a PEEK HFMC unit to capture ≥90% of the CO₂ from flue gases with 95% CO₂ purity

AIR LIQUIDE ALaS Porogen 🖭

• <u>Team:</u> <u>gti</u> <u>Rensselaer</u>

TRIMERIC CORPORATION

GO-HFMC process

- GO-PEEK uses a conventional gas separation membrane unit to capture bulk of the CO₂ from flue gas followed by a PEEK HFMC unit to further capture CO₂ to achieve DOE's technical target
- GO membrane CO_2 permeance \geq 1,000 GPU CO_2/N_2 selectivity \geq 90
- HFMC CO₂ permeance \geq 3,000 GPU CO₂ mass transfer coefficient \geq 3 (sec)⁻¹

Space in between GO layers filled with CO₂-philic agent, and thus high selectivity

High performance GO-PZ membrane

GO superior performance to polymeric membranes

Robeson, J. Membrane Sci. **2008**, Vol. 320, p390 Note: Polymer data points (red): 100 nm membrane thickness assumed

Integrated testing ongoing, preliminary results indicated >90% CO₂ removal and >95% CO₂ purity

<u>GO unit</u>: Feed CO₂ concentration: 11 vol.%

Retentate CO₂ concentration: 5.53 vol.%

PEEK unit: Feed CO₂ concentration: 5.53 vol.%

- Retentate CO₂ concentration: 0.21 vol.%
- CO₂ purity from regeneration: 96.9 vol.%

Component	Mol %	Det. Limit	Weight %
Helium		0.1%	
Hydrogen		0.1%	
Carbon Dioxide	96.9%	0.03%	97.9%
Oxygen/Argon	0.50%	0.03%	0.37%
Nitrogen	2.62%	0.03%	1.68%
Carbon Monoxide		0.03%	
Methane		0.002%	
Ethane		0.002%	
Ethene		0.002%	
Ethyne		0.002%	
Propane		0.002%	
Propene		0.002%	
Cyclopropane		0.002%	
Propadiene		0.002%	
Propyne		0.002%	
i-Butane		0.002%	
n-Butane		0.002%	
1-Butene		0.002%	
i-Butene		0.002%	
trans-2-Butene		0.002%	
cis-2-Butene		0.002%	
1,3-Butadiene		0.002%	
neo-Pentane		0.002%	
i-Pentane		0.002%	
n-Pentane		0.002%	
Pentenes		0.002%	
Hexane Plus		0.002%	
Hydrogen Sulfide		0.10%	

3rd Generation Technology: GO² Process

ARTICLE

DOI: 10.1038/s41467-017-02318-1 OPEN

Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO₂-philic agent for highly efficient CO₂ capture

```
Fanglei Zhou<sup>1</sup>, Huynh Ngoc Tien<sup>2</sup>, Weiwei L Xu<sup>2</sup>, Jung-Tsai Chen<sup>2</sup>, Qiuli Liu<sup>2</sup>, Ethan Hicks <sup>0</sup>/<sub>2</sub>, Mahdi Fathizadeh <sup>0</sup>/<sub>2</sub>, Shiguang Li<sup>3</sup> & Miao Yu<sup>1</sup>
```

 Objective: Develop a transformational graphene oxide (GO)-based membrane process (GO²) for CO₂ capture with 95% CO₂ purity

✓ TRIMERIC CORPORATION

Team:

Process description

- 90% removal from coal or natural gas flue gases: a proprietary GO² process integrates a high-selectivity GO-1 membrane and a high-flux GO-2 membrane for optimal performance
- GO-1: selectivity ≥200 and CO₂ permeance ≥1,000 GPU
- GO-2: selectivity \geq 20 and CO₂ permeance \geq 2,500 GPU

In addition to hollow fiber membranes, flat sheet membranes were successfully prepared by printing

GO-1 membrane: 1,000 GPU CO₂ GO-2 membrane: 2,500 GPU CO₂ permeance with selectivity >600 permeance with selectivity >30

Membrane Reactor for DME Production

- Objectives: Demonstrate production of DME on a 1 kg/day scale from CO₂ and H₂ using a novel catalytic membrane reactor. Perform a market analysis and TEA to achieve a target SUE of 0.254 \$/kWh DME.
- Team:

New approach to making DME

Feed H₂ and CO₂ not CH₄ and H₂O
Bifunctional catalyst and membrane reactor shift equilibrium towards product formation

- Membrane removes produced water in situ
 - mproves catalyst stability
 - shifts equilibrium to higher CO₂ conversion and DME yields
- 😪 Compact, modular design
- **Solution** Lower production cost
- Seeking commercialization partners

pressures up to 500 psi

1. Methanol synthesis: $CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$

2. **DME synthesis**: $2CH_3OH \rightarrow CH_3OCH_3 + H_2O$

<u>**Overall reaction**</u>: $2CO_2 + 6H_2 \rightarrow CH_3OCH_3 + 3H_2O$

Bi-functional catalyst performance

Catalyst achieved DME yield of 22%

Catalyst Properties

- Methanol synthesis: CuO/ZnO/Al₂O₃
- ME synthesis: H-ZSM-5
- ☆ BET surface area 132 m²/g
- 😪 Particle size 10-30 nm

Water-selective membrane performance

Membrane Properties

- Solution were the second secon
- ✓ Selectivity >30 for H₂O over CO₂, CO, H₂, MeOH at 200 °C, 300 psig

Typical impact of the membrane reactor on methanol and DME production compared with packed-bed reactor

gti.

Acknowledgements

Financial and technical support

CO₂ Capture Project - Phase 4

DE-AR0000806

DOE NETL: Steven Mascaro, José Figueroa and Lynn Brickett

NATIONAL

ENERGY TECHNOLOGY LABORATORY

- DOE ARPA-E: Dr. Grigorii Soloveichik, Dr. Madhav Acharya, Dr. Sean Vail, Dr. Dawson Cagle
- Partners

For additional information contact Howard Meyer (hmeyer@gti.energy)

Disclaimer

This presentation was prepared by GTI as an account of work sponsored by an agency of the United States Government. Neither GTI, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.