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Background

Renewables 35%
u CCS 14%
u Fuel switching 5%
u Efficiency 40%
= Nuclear 6%

0
2014 2020 2030 2040 2050 2060

Source: International Energy Agency (2017), Energy Technology Perspectives 2017, OECD/IEA, Paris
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CO, capture methods
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Reforming methods
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* CLR has less thermodynamic losses and has inherent air

separation

* CLR reforms CH, to a product gas with higher H,/CO ratio
when compared to conventional POX
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Earlier project

m Project NanoSim: A Multiscale Simulation-Based Design Platform for Cost-Effective CO, Capture
Processes using Nano-Structured Materials (EU FP7 framework)

https://www.sintef.no/projectweb/nanosim/
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Develop an open-source computational platform that will
allow the rational design of the second generation of
gas-particle CO, capture technologies based on nano-
structured materials

Design and manufacture nano-structured material and
shorten the development process of nano-enabled
products based on the multi-scale modelling

Design and demonstrate an energy conversion reactor
with CO, capture based on the superior performance of
nano-structured materials
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Outline

 Different modeling scales
— Atomistic level modeling
— 1D modeling (reactor scale)
— Process modeling (plant scale)
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Atomistic and cluster scale modeling

« Reactivity of nanoparticles at the atomic scale/nanoscale, is estimated through kinetic
Monte Carlo (kMC) modeling, guided by Density Functional Theory (DFT)
calculations, on the detailed kinetics of the CH, conversion to products as a function

of temperature.

 Cluster scale:

o Intra-particle transport model
o Fluid-Particle flow model (Tools: LIGGGHTS for particle motion and CFDEM for

fluid flow)

Reference: Andersson, S., et al., Towards rigorous multiscale flow models of nanoparticle reactivity in chemical looping
applications. Catalysis Today, 2019.
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Equipment scale - 1D Model of CLR

( Rapid convergence

» Wide range of applicability (reasonably generic)

« User friendly

 Accommodate reactor clusters

& Handle dynamic and stationary simulations

~

J

Bubbling

Turbulent Fast fluidization

| “Generalized fluidized bed '
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1-D model for fluidized bed reactors

Generic formulation based on the generic model developed by Abba et al. (2003)
* uses an averaging probabilistic approach : S—
«  Two-phase model Single formulation is used!

Differential Balances
Numerical scheme:

* Mass balance «  Method of lines (MATLAB routine ode15s)
* Gastotal mass balance + Finite volume method (discretization in
» (Gas species mass balance for s
pace)
each phe}se ) * Non-uniform grid
* Total solids species mass + Convective term: 18t order upwind
balance scheme
» Diffusion term: central differences
+ Total Energy balance scheme

 Pressure Balance

Reference: Abba, |.a., et al., Spanning the flow regimes: Generic fluidized-bed reactor model. AIChE Journal, 2003. 49: p. 1838-1848.
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Two phases
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Averaging probabilistic approach
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Reference: Abba, l.a., et al., AIChE Journal, 2003. 49: p. 1838-1848.

NTNU Norwegian University of Science and Technology 13



1D Model outline

Initial and Boundary conditions

Thermochemical properties
Relations for gas and solids

Constants
Reactor dimensions;
Fundamental and kinetic

properties

/

cosnstants

Reaction kinetics

Closures for hydrodynamics

Differential Balances
Mass balance; Energy
balance; Pressure

Bubbling, Turbulent and Fast
Fluidization Regimes

}

I ]

Solver

Probabilistic Approach

!

Define the model hydrodynamic

parameters

Simulation results
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Parameter interaction in 1D-Model

KMC = Kinetic Monte Carlo

» Kinetic parameters (Arrehnius parameters)

@NTNU

Gas physical properties/conditions
* Flowrate

* Density ﬂ
« Composition

* Heat capacity

Solid physical properties/conditions

* Flowrate

* Density

 Composition g
* Temperature

* Heat capacity

+ Particle size

Norwegian University of Science and Technology

Affects:

Gas velocities

Void fraction
Temperature

Reaction rate (R = kC")
Pressure drop

Affects:

Solids velocities

Void fraction
Temperature

Reaction rate (R = kC")
Pressure drop

Solid recirculation rate
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System (process plant) scale model
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Interaction between 1d model and plant
scale simulations
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Pre-combustion combined cycle with CLR
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Key performance indicators

d
CO, Capture (%) = €9, Capture x 100

CO0, generated in the process

__ Co, (emitted by ref.plant)—CO0, (emitted by process)

, x 100
CO, (emitted by ref. plant)

CO, Avoidance (%)

Net Electricity Produced

x 100

Net Electrical Efficiency (%-LHV input)

" LHV of fuel inout to process
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Key performance indicators

Levelised cost of electricity
($/MWh)

TCR — Total capital requirement
FC — Fuel costs

HR — Heat Rate

Cost of CO, avoided

LCOE = (TCR)(FCF) + FOM VOM + (HR)(FC
~ (MW)(CF x 8766) + + (HR)(FO)

FOM - Fixed operating & maintenance costs

VOM — Variable operating & maintenance
costs

_ _ LCOEcLR _ cc —LCOENGcC
tCO, tCo,
(MWh) NGCC — (MWh) CLR _CC

*GCCSI. 2013. Global CCS Institute - TOWARD A COMMON METHOD OF COST ESTIMATION FOR CO, CAPTURE AND STORAGE AT FOSSIL FUEL

POWER PLANTS.
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Outline

« Description of the method — flow and type of data
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Flow of data

Atomic/Particle
Scale

Physics and
Chemistry

* Kinetic data from
atomic/molecular
simulations

« Particle size and
shape
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Equipment
Scale

Chemical Engineering
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Physical
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modeling at
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closures derived at
atomic/cluster level

* Heat transfer
* Mass transfer
* Hydrodynamics
* Reactions
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» Cost of electricity
» CO, captured and avoided
» Cost of CO, avoided

Process modeling and simulation by
linking the equipments together

* Thermodynamics
* Process integration
* Process efficiency
* Optimization
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Outline

 Results
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Conversion profiles in CLR — 1D Model
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Sensitivity study for techno-economic
analysis

@NTNU

Cases O,/CH, Steam/CH,by Oxidation Reactor Outlet CH, flow
by moles mass Temperature (°C) (TPH)
1 0.9 0.5 1200 170
2 0.9 1 1200 170
3 0.9 1.5 1200 172
4 0.9 0.5 1100 170
5 0.9 1 1100 170
6 0.9 1.5 1100 170
7 0.8 0.5 1200 160
8 0.8 1 1200 160
9 0.8 1.5 1200 160
10 0.8 0.5 1100 160
11 0.8 1 1100 160
12 0.8 1.5 1100 160

Norwegian University of Science and Technology
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Techno-economic performance
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*Nazir, S.M., et al., Techno-economic assessment of chemical looping reforming of natural gas for hydrogen production and power
generation with integrated CO2 capture. International Journal of Greenhouse Gas Control, 2018. 78: p. 7-20
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Oxygen carrier related costs

Oxygen carrier flowrate at different Steam/CH, ratio Oxygen carrier flow in
mass) in the fuel reactor of CLR
(mass) case 1 = 12289 TPH

| m Steam/CH4 = 0.5 mSteam/CH4 =1 m Steam/CH4 = 1.5
0

2500
Lifetime: 5 years

20000 Variable O&M cost from oxygen
carrier ~1.4 €/ MWh

15000

Lifetime: 0.5 years
Variable O&M cost from oxygen
carrier ~ 14 €/ MWh

10000

5000

Oxygen carrier flowrate (TPH)

1 2 3 4 5 6 7 8 9 10 11 12 *Considering cost of Ni-NiO
oxygen carriers

*Nazir, S.M., et al., Techno-economic assessment of chemical looping reforming of natural gas for hydrogen production and power
generation with integrated CO2 capture. International Journal of Greenhouse Gas Control, 2018. 78: p. 7-20
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Outline

 Summary
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Summary

A method to develop oxygen carrier materials for chemical looping systems from a

techno-economic perspective is discussed.

« The method aims to reduce the time required to test different materials

experimentally.
« The tools at atomic, equipment and plant scale have been developed and tested.

 Future work will focus on mapping techno-economic process peformance with
different material properties. This chart could then be used a starting point to consider

oxygen carrier materials for respective chemical looping systems.
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Opportunities

Atomic/Particle
Scale

Physics and
Chemistry
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* Kinetic data from
atomic/molecular
simulations

« Particle size and
shape
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Equipment
Scale

Chemical Engineering

S

~ ey -
Physical
phenomenological
modeling at

equipment scale with
closures derived at
atomic/cluster level

* Heat transfer
* Mass transfer
* Hydrodynamics
* Reactions

Plant Scale

Process Systems Engineering

Process modeling and simulation by
linking the equipments together

* Thermodynamics
* Process integration
* Process efficiency
* Optimization
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Global Scale

Economics

» Cost of electricity
» CO, captured and avoided
» Cost of CO, avoided
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