

DEVELOPMENT OF NANO-STRUCTURED MATERIALS THROUGH A NOVEL MULTI-SCALE MODELLING FRAMEWORK FOR ENERGY CONVERSION WITH CO₂ CAPTURE

Shareq Mohd Nazir^{1,*}, Joana Francisco Morgado^{1,2,5}, Stefan Andersson³, Zheng Xiao Guo⁴, Shahriar Amini^{1,3}

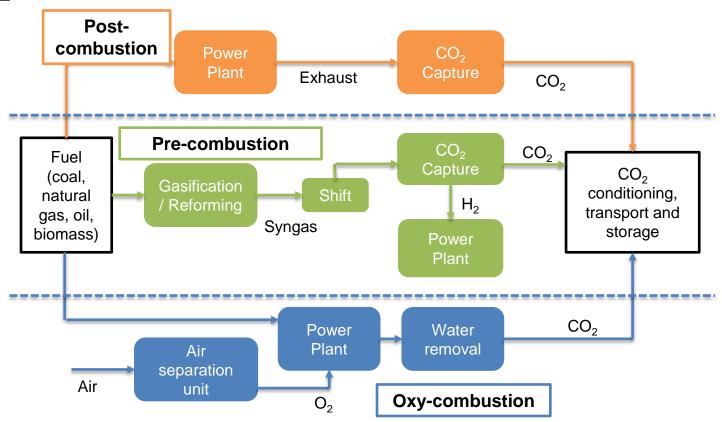
- ¹ Norwegian University of Science and Technology, Trondheim, Norway
- ² University of Coimbra, Coimbra, Portugal
- ³ SINTEF Industry, Trondheim, Norway
- ⁴ University College London, United Kingdom
- ⁵ Ifavidro Lda, Portugal

Outline

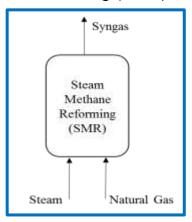
- Background and introduction
- Different modeling scales
 - Atomistic level modeling
 - 1D modeling (reactor scale)
 - Process modeling (plant scale)
- Description of the method flow and type of data
- Results
- Summary

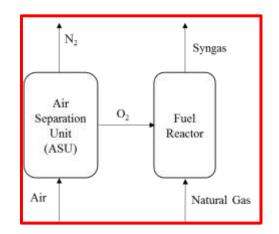
Outline

- Background and introduction
- Different modeling scales
 - Atomistic level modeling
 - 1D modeling (reactor scale)
 - Process modeling (plant scale)
- Description of the method flow and type of data
- Results
- Summary

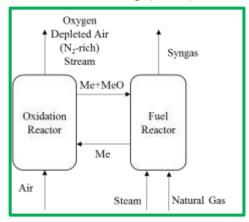

Background

Source: International Energy Agency (2017), Energy Technology Perspectives 2017, OECD/IEA, Paris


CO₂ capture methods



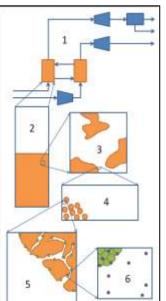
Reforming methods


Steam Methane Reforming (SMR)

Partial Oxidation (POX)

Chemical Looping Reforming (CLR)

- SMR $CH_4 + H_2O \rightleftharpoons CO + H_2$
- POX $CH_4 + O_2 \rightleftharpoons CO + H_2$
- CLR $CH_4 + MeO \rightleftharpoons CO + H_2$
- CLR has less thermodynamic losses and has inherent air separation
- CLR reforms CH₄ to a product gas with higher H₂/CO ratio when compared to conventional POX



Earlier project

Project <u>NanoSim</u>: A Multiscale Simulation-Based Design Platform for Cost-Effective CO₂ Capture Processes using Nano-Structured Materials (EU FP7 framework)

https://www.sintef.no/projectweb/nanosim/

- 1. System Scale
- 2. Equipment Scale
- 3. Cluster Scale
- 4. Particle Scale
- 5. Intra-particle pore scale
- 6. Atomistic scale

Consortium

- SINTEF Industry
- 2. TU Graz
- 3. University College London
- 4. INPT Toulouse
- NTNU
- 6. DCS Computing GmbH
- Andritz Energy and Environment GmbH
- 8. University de Coimbra

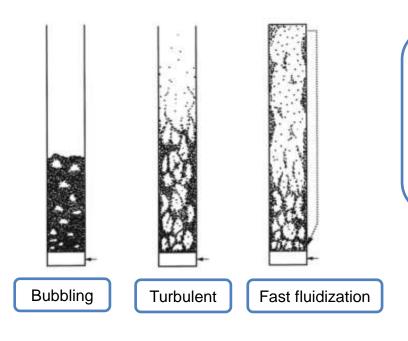
- Develop an open-source computational platform that will allow the rational design of the second generation of gas-particle CO₂ capture technologies based on nanostructured materials
- Design and manufacture nano-structured material and shorten the development process of nano-enabled products based on the multi-scale modelling
- Design and demonstrate an energy conversion reactor with CO₂ capture based on the superior performance of nano-structured materials

Outline

- Background and introduction
- Different modeling scales
 - Atomistic level modeling
 - 1D modeling (reactor scale)
 - Process modeling (plant scale)
- Description of the method flow and type of data
- Results
- Summary

Atomistic and cluster scale modeling

 Reactivity of nanoparticles at the atomic scale/nanoscale, is estimated through kinetic Monte Carlo (kMC) modeling, guided by Density Functional Theory (DFT) calculations, on the detailed kinetics of the CH₄ conversion to products as a function of temperature.


Cluster scale:

- Intra-particle transport model
- Fluid-Particle flow model (Tools: LIGGGHTS for particle motion and CFDEM for fluid flow)

Reference: Andersson, S., et al., *Towards rigorous multiscale flow models of nanoparticle reactivity in chemical looping applications.* Catalysis Today, 2019.

Equipment scale - 1D Model of CLR

- · Rapid convergence
- Wide range of applicability (reasonably generic)
- User friendly
- Accommodate reactor clusters
- Handle dynamic and stationary simulations

"Generalized fluidized bed reactor" (GFBR) model

1-D model for fluidized bed reactors

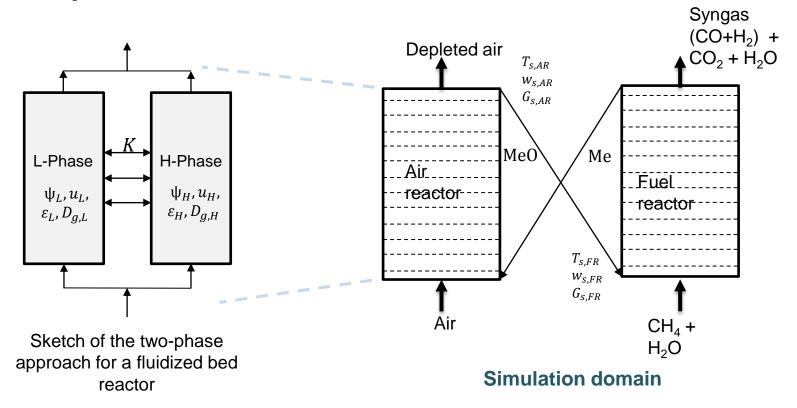
Generic formulation based on the generic model developed by Abba et al. (2003)

- uses an averaging probabilistic approach
- Two-phase model

Single formulation is used!

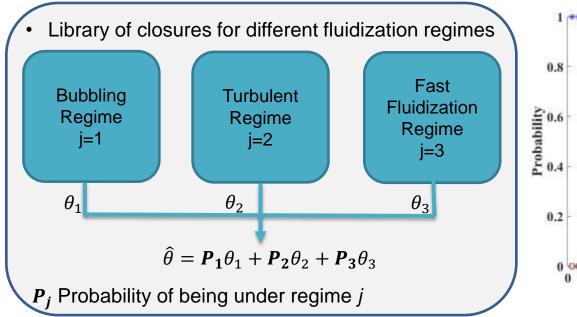
Differential Balances

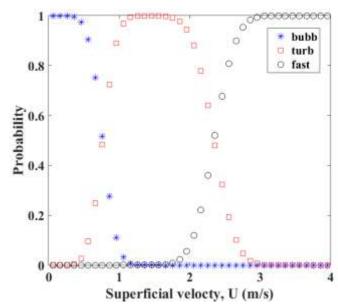
- Mass balance
 - Gas total mass balance
 - Gas species mass balance for each phase
 - Total solids species mass balance
- Total Energy balance
- Pressure Balance


Numerical scheme:

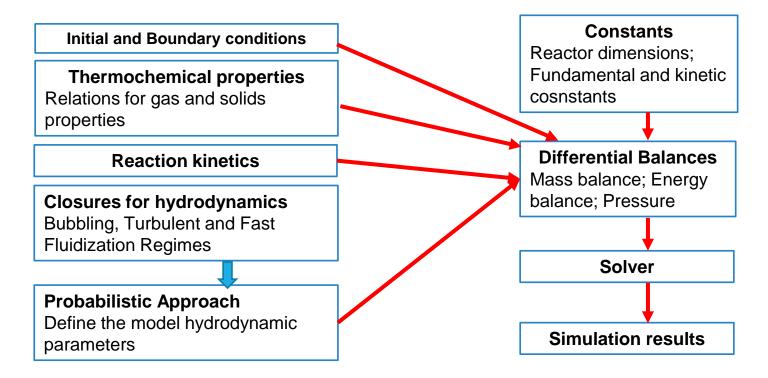
- Method of lines (MATLAB routine ode15s)
- Finite volume method (discretization in space)
 - Non-uniform grid
 - Convective term: 1st order upwind scheme
 - **Diffusion term**: central differences scheme

Reference: Abba, I.a., et al., Spanning the flow regimes: Generic fluidized-bed reactor model. AIChE Journal, 2003. 49: p. 1838-1848.




Two phases

Averaging probabilistic approach



Reference: Abba, I.a., et al., AIChE Journal, 2003. 49: p. 1838-1848.

1D Model outline

Parameter interaction in 1D-Model

KMC – Kinetic Monte Carlo

Kinetic parameters (Arrehnius parameters)

Gas physical properties/conditions

- Flowrate
- Density
- Composition
- Heat capacity

Affects:

Gas velocities

Void fraction

Temperature

Reaction rate $(R = kC^n)$

Pressure drop

Solid physical properties/conditions

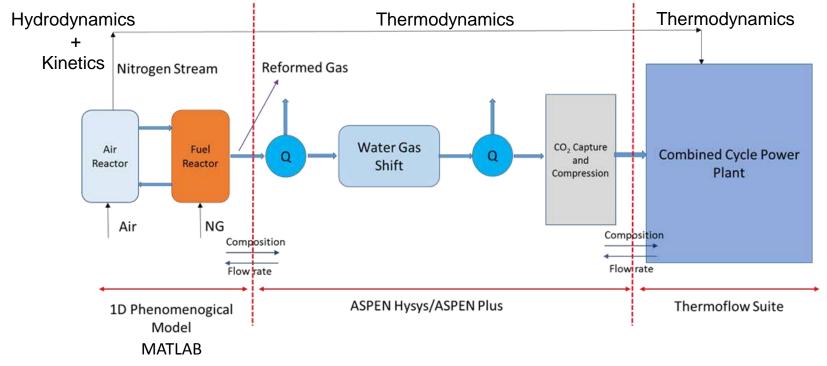
- Flowrate
- Density
- Composition
- Temperature
- Heat capacity
- Particle size

Affects:

Solids velocities

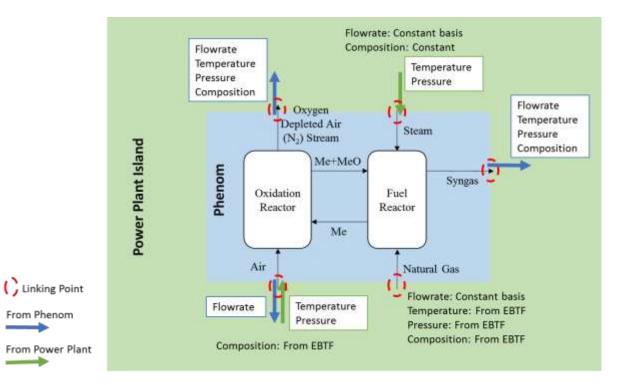
Void fraction

Temperature

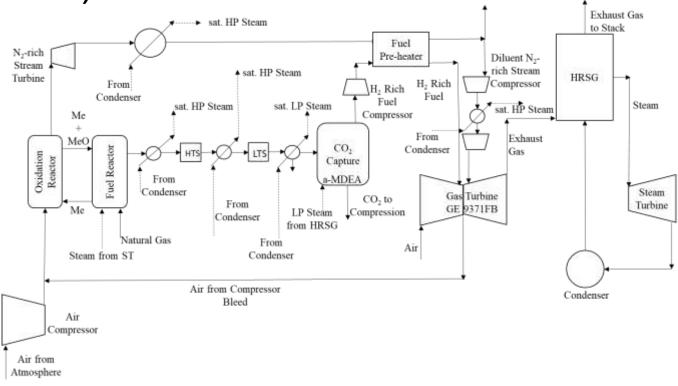

Reaction rate $(R = kC^n)$

Pressure drop

Solid recirculation rate



System (process plant) scale model


Interaction between 1d model and plant scale simulations

From Phenom

Pre-combustion combined cycle with CLR (CLR-CC)

Key performance indicators

CO₂ Capture (%)
$$= \frac{CO_2 Captured}{CO_2 generated in the process} \times 100$$

CO₂ Avoidance (%)
$$= \frac{CO_2 (emitted \ by \ ref. \ plant) - CO_2 (emitted \ by \ process)}{CO_2 (emitted \ by \ ref. \ plant)} \times 100$$

Net Electrical Efficiency (%-LHV input) =
$$\frac{Net\ Electricity\ Produced}{LHV\ of\ fuel\ inout\ to\ process} \times 100$$

Key performance indicators

Levelised cost of electricity (\$/MWh)

$$LCOE = \frac{(TCR)(FCF) + FOM}{(MW)(CF \times 8766)} + VOM + (HR)(FC)$$

TCR - Total capital requirement

FOM – Fixed operating & maintenance costs

FC - Fuel costs

VOM – Variable operating & maintenance

HR - Heat Rate

costs

$$=\frac{LCOE_{CLR} _CC - LCOE_{NGCC}}{\left(\frac{tCO_2}{MWh}\right)_{NGCC} - \left(\frac{tCO_2}{MWh}\right)_{CLR} _CC}$$

*GCCSI. 2013. Global CCS Institute - TOWARD A COMMON METHOD OF COST ESTIMATION FOR CO₂ CAPTURE AND STORAGE AT FOSSIL FUEL POWER PLANTS.

Outline

- Background and introduction
- Different modeling scales
 - Atomistic level modeling
 - 1D modeling (reactor scale)
 - Process modeling (plant scale)
- Description of the method flow and type of data
- Results
- Summary

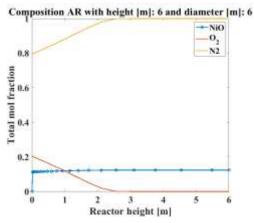
Flow of data

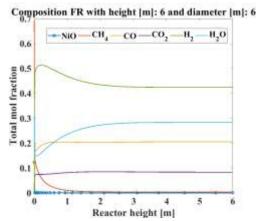
Atomic/Particle Equipment Global Scale **Plant Scale** Scale Scale Physics and Process Systems Engineering **Economics** Chemical Engineering Chemistry Exhaud Gas e set HF Stone N-eich Stream Turbine Diluont No nich Strong mesc Сощимог Sympa (CO+H) CO₂+H₂O Sees. Turban **Environment and Market** Natural Gas Street from ST Condense Air from Compressor DI, jani atau National Article Air fren Atmesphere · Cost of electricity Process modeling and simulation by Physical · Kinetic data from • CO₂ captured and avoided phenomenological linking the equipments together atomic/molecular Cost of CO₂ avoided modeling at simulations · Particle size and equipment scale with Thermodynamics closures derived at · Process integration shape atomic/cluster level · Process efficiency

Optimization

Heat transferMass transferHydrodynamicsReactions

Outline

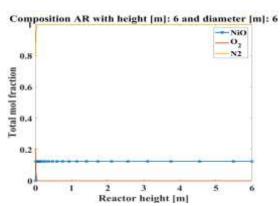

- Background and introduction
- Different modeling scales
 - Atomistic level modeling
 - 1D modeling (reactor scale)
 - Process modeling (plant scale)
- Description of the method flow and type of data
- Results
- Summary

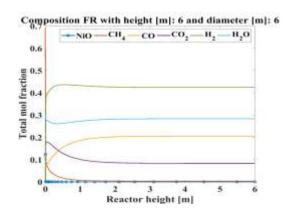


Conversion profiles in CLR – 1D Model

Base case kinetic data from literature

Installed cost of CLR = 49 M€

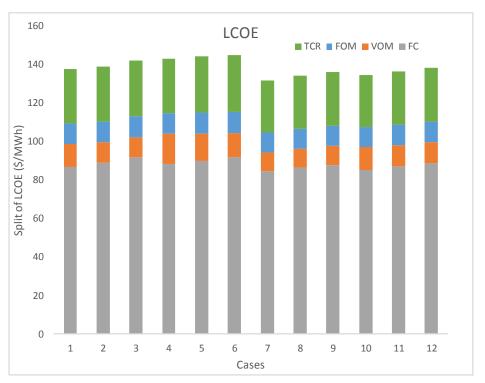




Support particle size: 250 microns

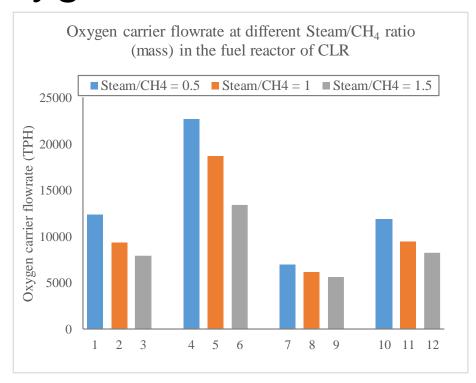
Assuming 50x times faster kinetics

Installed cost of CLR = 41 M€



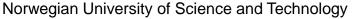
Sensitivity study for techno-economic analysis

Cases	O ₂ /CH ₄	Steam/CH ₄ by	Oxidation Reactor Outlet	CH ₄ flow
	by moles	mass	Temperature (°C)	(TPH)
1	0.9	0.5	1200	170
2	0.9	1	1200	170
3	0.9	1.5	1200	172
4	0.9	0.5	1100	170
5	0.9	1	1100	170
6	0.9	1.5	1100	170
7	0.8	0.5	1200	160
8	0.8	1	1200	160
9	0.8	1.5	1200	160
10	0.8	0.5	1100	160
11	0.8	1	1100	160
12	0.8	1.5	1100	160


Techno-economic performance

*Nazir, S.M., et al., Techno-economic assessment of chemical looping reforming of natural gas for hydrogen production and power generation with integrated CO2 capture. International Journal of Greenhouse Gas Control, 2018. 78: p. 7-20

Oxygen carrier related costs


Oxygen carrier flow in case 1 = 12289 TPH

Lifetime: 5 years Variable O&M cost from oxygen carrier ~1.4 €/MWh

Lifetime: 0.5 years Variable O&M cost from oxygen carrier ~ 14 €/MWh

*Considering cost of Ni-NiO oxygen carriers

*Nazir, S.M., et al., Techno-economic assessment of chemical looping reforming of natural gas for hydrogen production and power generation with integrated CO2 capture. International Journal of Greenhouse Gas Control, 2018. 78: p. 7-20

Outline

- Background and introduction
- Different modeling scales
 - Atomistic level modeling
 - 1D modeling (reactor scale)
 - Process modeling (plant scale)
- Description of the method flow and type of data
- Results
- Summary

Summary

- A method to develop oxygen carrier materials for chemical looping systems from a techno-economic perspective is discussed.
- The method aims to reduce the time required to test different materials experimentally.
- The tools at atomic, equipment and plant scale have been developed and tested.
- Future work will focus on mapping techno-economic process peformance with different material properties. This chart could then be used a starting point to consider oxygen carrier materials for respective chemical looping systems.

Opportunities

Atomic/Particle Equipment Global Scale **Plant Scale** Scale Scale Physics and Process Systems Engineering **Economics** Chemical Engineering Chemistry Exhaust Gas - a set HP Stone to Stock N-eich Streen Turkine Diluont No nich Strong mesc Сощимог Sympa (CO+H) CO₂+H₂O Seess. Turbaic **Environment and Market** Natural Gas Street from ST Condense Air from Compressor DI, per de National Article Air fren Atmesphore · Cost of electricity Physical Process modeling and simulation by · Kinetic data from • CO₂ captured and avoided phenomenological linking the equipments together atomic/molecular Cost of CO₂ avoided modeling at simulations · Particle size and equipment scale with Thermodynamics closures derived at · Process integration shape

Process efficiencyOptimization

atomic/cluster level

Heat transferMass transferHydrodynamicsReactions

Thank you

Shareq.m.nazir@ntnu.no

