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•                        Enabling a Low-Carbon Economy via Hydrogen 
and CCS 

 

• State-of-the-art low carbon H2 production  
 Steam Methane Reforming with pre-combustion carbon capture  

(solvent: Methyl diethanolamine, MDEA) 

 

• Goals 
 developing a methodology to optimize H2 production with CCS 

 testing on a case study with existing technologies  

 applying this methodology to new technologies  (e.g. Vacuum 
Pressure Swing Adsorption) 
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Hydrogen production with CCS 

https://blog.sintef.com/wp-content/uploads/2018/08/Elegancy-logo.png
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Low-Carbon Hydrogen Production  
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MDEA capture process: benchmark 
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1 Romano, M. C., Chiesa, P., & Lozza, G. (2010). Pre-combustion CO2 capture from natural gas power plants,   
   with ATR and MDEA processes. International Journal of Greenhouse Gas Control, 4(5), 785-797. 
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This study: advanced MDEA process configuration 
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1 Romano, M. C., Chiesa, P., & Lozza, G. (2010). Pre-combustion CO2 capture from natural gas power plants,   
   with ATR and MDEA processes. International Journal of Greenhouse Gas Control, 4(5), 785-797. 



| | 6/17/2019 Cristina Antonini 6 

MDEA process simulation 
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• The process is simulated in Aspen Plus® 

‒ RadFrac model with equilibrium stage calculations used for the columns 
 

• The liquid phase is described by the Electrolyte NRTL model, while for the vapour phase 
Redlich-Kwong equation of state is used. 

 for CO2 compression the Peng-Robinson equation of state is selected 

CO2 capture rate: 90% 

Purity 88.8% 99.9% 

T=308 K 
P=26 bar 

Raw H2 Pure CO2 
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MDEA process simulation 
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• The process is simulated in Aspen Plus® 

‒ RadFrac model with equilibrium stage calculations used for the columns 
 

• The liquid phase is described by the Electrolyte NRTL model, while for the vapour phase 
Redlich-Kwong equation of state is used. 

 for CO2 compression the Peng-Robinson equation of state is selected 

CO2 capture rate: 97% 

Raw H2 Pure CO2 

4985 0.0003 

32 1038 

304 ppm 

200 ppm 

13 ppm 

5534 1038 

Purity 89.9% 99.9% 

T=308 K 
P=26 bar 
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𝑤 = 
𝑊tot

𝑚 CO2 captured 
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Description of the optimization problem  
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 282 K,     Δ𝑇min =  10 K 

 

• Multi-objective optimization problem 
 

• To minimize the total specific exergy w while maximizing the capture rate Ψ: 

• All process variables, such as flowrates 
and column conditions, could be tuned 
to optimize the process 

 time demanding 

  
• Faster systematic approach 

       define the Key Process Variables, 
which will then become the decision 
variables in the optimization problem   

T=308 K 
P=26 bar 

semi-lean stream 

𝑊tot = 𝜂P   𝑊pumpi + 

𝑖

𝜂C   𝑊comprj + 𝑄R  1 −
𝑇amb

𝑇reb + Δ𝑇min
 

𝑗

 

min 𝑤,
1

Ψ
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c/m  

• Pressure and temperature of the units 
 
• Size of the columns  
 
• Split fractions 

 
• Reboiler duty and feed stages 

 
• Liquid to gas mass flow ratio (L/G) 

 CO2 to MDEA molar ratio (c/m) 

 

 

 

 

 c/m depends on the MDEA 
concentration (here: 40 wt%, CO2 free) 
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Process variables  
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Decision variables and ranges of investigation 

Single-variable sensitivity analysis was 
performed on all process variables 
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Specific optimization problem 

• To minimize the total specific exergy w while maximizing the capture rate Ψ 

• Genetic algorithm 
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c/m = 0.30 c/m = 0.30 

Key process variables analysis – c/m 
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Capture rate Ψ 

c/m = 0.30 
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c/m = 0.30 c/m = 0.30 

Key process variables analysis – c/m 
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feasible region 

unfeasible region 

Capture rate Ψ 

Ψ = 90% 

c/m = 0.50 
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Analysis of the optimization results 
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Analysis of the optimization results 
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•   •   

•   

  •   

Benchmark* 
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*Results taken from an MDEA plant optimization work1 

 

1Romano, M. C., Chiesa, P., & Lozza, G. (2010). Pre-combustion CO2 capture from natural gas power plants,   
   with ATR and MDEA processes. International Journal of Greenhouse Gas Control, 4(5), 785-797. 

Ψ = 90% 
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Analysis of the optimization results 

• At Ψ > 97% the w exponentially increases 

• The contribution of b2 becomes more important to reach higher capture rates more efficiently 

 

+ 18 % 
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Conclusions 

• A rigorous approach was developed with the goal of finding the optimal operating conditions of 
a MDEA CO2 capture plant  

‒ multi-objective optimization was used as a tool to find the Pareto Optimum between the 
total specific exergy and the capture rate  

‒ the decision variables were selected among the process variables by performing single-
parameter sensitivity analysis  

 
• The addition of a second splitter is advantageous especially while operating at high capture rates 

 
• To decide how to operate the CO2 capture plant, we need to look at the entire process 
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Conclusions 

• A rigorous approach was developed with the goal of finding the optimal operating conditions of 
a MDEA CO2 capture plant  

‒ multi-objective optimization was used as a tool to find the Pareto Optimum between the 
total specific exergy and the capture rate  

‒ the decision variables were selected among the process variables by performing single-
parameter sensitivity analysis  

 
• The addition of a second splitter is advantageous especially while operating at high capture rates 

 
• To decide how to operate the CO2 capture plant, we need to look at the entire process 
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Back-up slides  
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Design Improving Energy Consumption  
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Modelling Framework  
Modelling framework 

Input Data 

Experimental and 
manufactures 

data from 
literature 

Case study data 

1.First principle 
thermodynamic models 

Aspen Plus® modelling 

Equilibrium-
based model 

Rate-based 
model 

2.Reduced order 
models for process optimization 

Linear 
Piece-wise 

affine 
or 

3. MILP optimization 

min
𝒙,𝒚

 𝒄𝑻𝒙 + 𝒅𝑻𝒚  

subject to 

𝑨𝒙 + 𝑩𝒚 ≤ 𝒃 
 

𝒙 ≥ 𝟎 ∈ ℝ𝑁, 𝒚 ∈ 𝟎, 𝟏 𝑀 

Implementation 

1.   

2.   

3.   

c 
c 

Energy efficiency :    Eoutput = ɳ Einput     Cost linearization :     Ci = miS + qi 
 


