

Optimal Process design of MDEA CO₂ Capture Plant for Low-Carbon Hydrogen Production

Cristina Antonini, José Francisco Pérez Calvo, Mijndert van der Spek, Marco Mazzotti

Hydrogen production with CCS

- ELEGANCy Enabling a Low-Carbon Economy via Hydrogen and CCS
- State-of-the-art low carbon H₂ production
 - Steam Methane Reforming with pre-combustion carbon capture (solvent: Methyl diethanolamine, MDEA)
- Goals
 - \rightarrow developing a methodology to optimize H₂ production with CCS
 - \rightarrow testing on a case study with existing technologies
 - → applying this methodology to new technologies (e.g. Vacuum Pressure Swing Adsorption)

Low-Carbon Hydrogen Production

MDEA capture process: benchmark

¹ Romano, M. C., Chiesa, P., & Lozza, G. (2010). Pre-combustion CO2 capture from natural gas power plants, with ATR and MDEA processes. *International Journal of Greenhouse Gas Control*, *4*(5), 785-797.

This study: advanced MDEA process configuration

¹ Romano, M. C., Chiesa, P., & Lozza, G. (2010). Pre-combustion CO2 capture from natural gas power plants, with ATR and MDEA processes. *International Journal of Greenhouse Gas Control*, *4*(5), 785-797.

MDEA process simulation

- The process is simulated in Aspen Plus®
 - RadFrac model with equilibrium stage calculations used for the columns
- The liquid phase is described by the Electrolyte NRTL model, while for the vapour phase Redlich-Kwong equation of state is used.

 \rightarrow for CO₂ compression the Peng-Robinson equation of state is selected

Mole flow [kmol/hr]	Syngas	Raw H ₂	Pure CO ₂
H ₂	4985	4985	0.0003
CO ₂	1070	107	963
СО	304	304	ppm
CH ₄	200	200	ppm
N ₂	13	13	ppm
Total flow [kmol/hr]	6572	5609	963
Purity		88.8%	99.9%

CO₂ capture rate: 90%

MDEA process simulation

- The process is simulated in Aspen Plus®
 - RadFrac model with equilibrium stage calculations used for the columns
- The liquid phase is described by the Electrolyte NRTL model, while for the vapour phase Redlich-Kwong equation of state is used.

 \rightarrow for CO₂ compression the Peng-Robinson equation of state is selected

Mole flow [kmol/hr]	Syngas	Raw H ₂	Pure CO ₂
H ₂	4985	4985	0.0003
CO ₂	1070	32	1038
СО	304	304	ppm
CH ₄	200	200	ppm
N ₂	13	13	ppm
Total flow [kmol/hr]	6572	5534	1038
Purity		89.9%	99.9%

CO₂ capture rate: 97%

Description of the optimization problem

- Multi-objective optimization problem
- To minimize the total specific exergy w while maximizing the capture rate Ψ : min $w, \frac{1}{w}$

$$w = \frac{W_{\text{tot}}}{\dot{m}_{\text{CO}_2 \text{ captured}}} \qquad \qquad W_{\text{tot}} = \eta_{\text{P}} \sum_{i} W_{\text{pump}_i} + \eta_{\text{C}} \sum_{j} W_{\text{compr}_j} + Q_{\text{R}} \left(1 - \frac{T_{\text{amb}}}{T_{\text{reb}} + \Delta T_{\text{min}}} \right)$$
$$T_{\text{amb}} = 282 \text{ K}, \quad \Delta T_{\text{min}} = 10 \text{ K}$$

• All process variables, such as flowrates and column conditions, could be tuned to optimize the process

 \rightarrow time demanding

- Faster systematic approach
 - → define the Key Process Variables, which will then become the decision variables in the optimization problem

Process variables

- Pressure and temperature of the units
- Size of the columns
- Split fractions
- Reboiler duty and feed stages
- Liquid to gas mass flow ratio (L/G) \rightarrow CO₂ to MDEA molar ratio (c/m)

 $\frac{c}{m} = \frac{\text{CO}_2 \text{ syngas}}{\text{MDEA rich stream}}$

→ c/m depends on the MDEA concentration (here: 40 wt%, CO₂ free)

Decision variables and ranges of investigation

Specific optimization problem

- To minimize the total specific exergy w while maximizing the capture rate arPsi
- Genetic algorithm

Key process variables analysis – *c/m*

Key process variables analysis – *c/m*

\Purple = 90%

Analysis of the optimization results

Analysis of the optimization results

 $\Psi = 90\%$

*Results taken from an MDEA plant optimization work¹

¹Romano, M. C., Chiesa, P., & Lozza, G. (2010). Pre-combustion CO2 capture from natural gas power plants, with ATR and MDEA processes. *International Journal of Greenhouse Gas Control*, 4(5), 785-797.

Analysis of the optimization results

- At Ψ > 97% the *w* exponentially increases
- The contribution of b_2 becomes more important to reach higher capture rates more efficiently

Conclusions

- A rigorous approach was developed with the goal of finding the optimal operating conditions of a MDEA CO₂ capture plant
 - multi-objective optimization was used as a tool to find the Pareto Optimum between the total specific exergy and the capture rate
 - the decision variables were selected among the process variables by performing singleparameter sensitivity analysis
- The addition of a second splitter is advantageous especially while operating at high capture rates
- To decide how to operate the CO₂ capture plant, we need to look at the entire process

Acknowledgment

ACT ELEGANCY, Project No 271498, has received funding from DETEC (CH), BMWi (DE), RVO (NL), Gassnova (NO), BEIS (UK), Gassco, Equinor and Total, and is cofunded by the European Commission under the Horizon 2020 programme, ACT Grant Agreement No 691712.

Conclusions

- A rigorous approach was developed with the goal of finding the optimal operating conditions of a MDEA CO₂ capture plant
 - multi-objective optimization was used as a tool to find the Pareto Optimum between the total specific exergy and the capture rate
 - the decision variables were selected among the process variables by performing singleparameter sensitivity analysis
- The addition of a second splitter is advantageous especially while operating at high capture rates
- To decide how to operate the CO₂ capture plant, we need to look at the entire process

Back-up slides

Design Improving Energy Consumption

Cristina Antonini | 6/17/2019 | 21

Modelling Framework

Modelling framework

Implementation

