

Techno-economic study of the CCMS technology for CO₂ capture from ferro-silicon production

Heidi S. Nygård, Julien Meyer, Luca di Felice, Nils Henrik Eldrup, Alf Tore Haug, Espen Olsen

TCCS-10 19/6/2019

Norwegian University of Life Sciences

• High temperature method for extracting CO₂ from a variety of flue gases related to power generation and **carbon-intensive industries**

 Based on the reversible reaction between an alkaline earth metal oxide (e.g. CaO) and CO₂ to form a metal carbonate

 $MO(s) + CO_2(g) \leftrightarrow MCO_3(s)$

• CCMS idea - molten salts are used as **chemical solvents** of the active substances

• Hypothesis –formed CaCO₃ dissolves continuously in the melt

• Hypothesis –formed CaCO₃ dissolves continuously in the melt

- Laboratory scale experiments with CaO in chlorides / fluorides
 - –One chamber reactor (< 1250°C)
 - -Absorbing liquid ~ 100 g 1 kg
 - -Simulated flue gas $(0 14 \text{ vol}\% \text{ CO}_2 \text{ in } \text{N}_2)$
 - -Gas analysis by FTIR
 - -Thermogravimetric analysis

Techno-economic study of the CCMS technology

 Case study – 40 MW FeSi furnace with theoretical conciderations regarding recirculation of the flue gas

Characteristic	Value		
	No recycle	73% recycle	
	After filter	Before filter	After filter
Flow rate (Nm ³ /h)	173 833	188 459	188 459
Pressure (mbarg)	-75	-45	-75
Temperature (°C)	130	150	130
Oxygen content (vol %)	16.4	6.00	6.00
Carbon dioxide content (vol %)	4.43	15.1	15.1
Water content (vol %)	4.28	11.8	11.8
Nitrogen content (vol %)	74.9	67.1	67.1

FeSi-furnace with CCMS (retrofitting)

 Grey area – scope of study

Absorber

- CO_2 content 12.5 vol%
- Volumetric flow 215 631 Nm³/h (53 t/h CO₂)
- CO_2 capture rate 85%
- Inlet temperature 130°C
- Absorption temperature 730°C
- Designed to be autothermal (exothermic reactions)

• Reaction kinetics based on experimental studies

Absorber

- Absorber width and length 12.1m (inner dimensions, square area)
- Total reactor height 14.4m (reaction zone height of 9.1m)

• Gas contact time - 6s

 Loaded and lean molten salts are transferred by pumps between the absorber and desorber

Desorber

- Desorber requires heat supply in order to regenerate the molten salt mixture at 925°C
- Proposed system fluidized bed combustor (1025°C) and heat pipes (in red) with sodium as working medium

- Total of 154 tubes are needed (outer diameter 0.168m and length 23.8m)
 - -7 rows with 22 horizontal tubes per row
 - Sodium mass flow 12.2 kg/s

Desorber

- Desorber
 - -Width 13.1m, length 14.5m
 - –Height 10.5m

- Combustor
 - -Width 11.3m, Length 14.5m
 - Temperature 1025°C

• Resulting total ground area for combustor and desorber system is 353 m².

Further processing of CO₂

 CO₂ swept from desorber with superheated steam

• CO₂ and steam further separated by condensation

 Released CO₂ is further dried and compressed to standard conditions (20°C and 70bar)

Production of electricity

 High quality steam is produced through heat exchangers and additional electricity is generated through standard steam turbines

Cost estimation

CAPEX	Value / comment
Cost date	2018
Location	Generic, North-West Europe
Plant type	N th of a Kind (NOAK), retrofitting
Plant site	Existing plant area (brown site)
Utilities	All utilities available (unit cost)
Access	Access to existing offices, control room, etc.
Materials	Stainless steel and high temperature materials
OPEX	Value / comment
Absorption medium	30 wt% CaO in molten CaCl ₂ -CaF ₂
Organization	Operator (2 extra shifts + 3 day time, total 15
	persons extra)
Coal price	80 EUR/tonne
Cost of electricity	40 EUR/MWh
Maintenance cost	4% of investment per year
Cost of cooling water	0.03 EUR/m^3
Economic	Value / comment
Rate of return	7.5%
Number of years	25 years
Number of operating hours	8760 h/year

- Estimate class 5, ±35%
- Detailed factor cost estimate method
- Equipment cost based on «Aspen In-plant» cost estimator and unit cost

Cost estimation

• Summary of CAPEX, OPEX and capture cost

	CCMS
CAPEX [MEUR]	195
OPEX [MEUR / year]	5
Capture cost [EUR / tonne CO ₂]	60

Costs divided per system

 Main cost driver is the cost of desorption

Norwegian University of Life Sciences

Conclusion

- Assuming that the capture system performs as anticipated, the results show intersting promise for using the CCMS technology for capturing CO₂ from metallurgical industry
- Technical challenges have been identified and will be adressed in further studies
 - -Heat transfer in desorber
 - -Material challenges due to high temperatures

Acknowledgements

 The work was carried out in the framework of the CLIMIT-Demo program (Project 617270 – "Verifikasjon av CCMS teknologi med relevante industriparametre og tilgang til varme")

Ӷ҄Ѩ҄҄҅҄҄҅҄҄҆Ҵ

Institute for Energy Technology

