() SINTEF

# CO<sub>2</sub>stCap

-1-

CO<sub>2</sub> capture opportunities in the Norwegian silicon industry TCCS – 10, Session A4

Anette Mathisen, Ragnhild Skagestad, Alf Tore Haug (Elkem)





- Is a Norwegian-Swedish research initiative initiated to reduce the cost of carbon capture in the process industry by developing concepts for partial capture
- Partners:
  - SSAB, Elkem AS, Norcem Brevik AS and AGA Gas AB
  - IEAGHG and Global CCS Institute
  - Gassnova via the CLIMIT–Demo Programme and The Swedish Energy Agency
  - SINTEF, Chalmers, RISE, SWERIM and University of South-Eastern Norway





### The industries

- Iron & steel
  - 5% of the global energy-related GHG emissions
  - The blast-furnace route requires coal for the reduction of the iron-ore
- Cement
  - 7% of the global energy-related GHG emissions
  - Emissions from burning of fuels for process heat, and due to the calcination of calcium carbonate
- Silicon
  - Consumes carbon and electricity
- Pulp & paper
  - Biomass could be utilised by creating negative CO<sub>2</sub> emissions on site through CCS or by replacing fossil fuels in more difficult emission sources





### Partial capture

 The partial capture concept is defined as capture of only parts of the available CO<sub>2</sub> emissions on a plant



- Examples where partial capture could be considered;
  - Plants that have excess unused energy or an energy system that constantly or depending on market conditions may produce a part of the heat needed for carbon capture at low-cost
  - For plants with multiple stacks, targeting the most suitable stack(s) instead of total site emission
  - Plants where carbon capture is cost-efficient in combination with other mitigation measures



### **Overall results**



SINTEF

# The silicon industry

- Silicon production is an energy intensive industry
- Consumes electricity and carbon-based raw materials
- Norwegian silicon has one of the lowest CO<sub>2</sub> emissions per ton product, mainly due to efficient process and hydro power
- Pathways are explored to reduce emissions: CCS, process development, waste heat utilisation, and bio-based carbon sources



©Elkem



6

Silicon production

- Two plants: Si and FeSi alloy
- Electric arc furnaces where quartz is reduced by carbon  $SiO_2 + 2C = Si + 2CO$
- With the current process, all CO is oxidized above the charge level
- The off-gas leaves the furnace at 400 700°C
  - Energy recovery is installed at some plants today





# Method and assumptions

- Techno-economic analysis
- MEA-based rich solvent split flow configuration
- Aspen In-plant Cost Estimator combined with an inhouse developed cost factor model
- Only plant emissions considered
- NOAK basis



| Parameter                                     | Unit               | Value |
|-----------------------------------------------|--------------------|-------|
| Electricity price                             | EUR/kWh            | 0.055 |
| Cooling water                                 | EUR/m <sup>3</sup> | 0.02  |
| Steam                                         | EUR/t              | 16.67 |
| Personnel – operators (1<br>person per shift) | kEUR/an            | 663.2 |
| Personnel – engineers (1<br>person)           | kEUR/an            | 157.9 |
| Maintenance (% of CAPEX)                      | %                  | 4     |
| Operating hours                               | h                  | 8 760 |
| Rate of return                                | %                  | 7.5   |
| Number of years                               |                    | 25    |
| Reference year                                |                    | 2015  |

## **REC Solar**



- The plant produced close to 10 kt Si in 2015 from one furnace for use in solar panels
- Corresponding CO<sub>2</sub> emission
  - 43 kt from fossil energy sources,
  - and 12 kt from bio based sources
- Does not utilise waste heat today
- Small plant and low CO<sub>2</sub> concentration

| Parameter        | Unit | Stream 4 | Stream 7 |
|------------------|------|----------|----------|
| CO <sub>2</sub>  | Vol% | 3.7      | 1.0      |
| H <sub>2</sub> O | Vol% | 1.0      | 7.4      |
| N <sub>2</sub>   | Vol% | 77.2     | 74.1     |
| 02               | Vol% | 18.1     | 17.5     |

Excess energy sufficient to capture 90% of the produced CO<sub>2</sub>

SINTEF CHALMERS BE SWERIM IN University of South-Eastern Norway

#### REC Solar - results

 The effect of increased CO<sub>2</sub> concentration and plant size

| Scenario | CO <sub>2</sub> capture<br>details                    | Specific reboiler<br>duty, SRD         | Steam supply/need                                    |
|----------|-------------------------------------------------------|----------------------------------------|------------------------------------------------------|
| 1a       | <b>1 vol%</b> CO <sub>2</sub> ,<br>90% capture rate   | 3.53 MJ/kg CO <sub>2</sub><br>captured | Electric boiler,<br>1x – 5.6 MW                      |
| 1b       | <b>1 vol%</b> CO <sub>2</sub> ,<br>90% capture rate   | 3.53 MJ/kg CO <sub>2</sub><br>captured | WHSG,<br>1x – 5.6 MW<br>3x – 16.8 MW<br>5x – 28.0 MW |
| 1c       | <b>3.7 vol%</b> CO <sub>2</sub> ,<br>90% capture rate | 3.34 MJ/kg CO <sub>2</sub><br>captured | WHSG,<br>1x – 5.6 MW<br>3x – 15.9 MW<br>5x – 26.5 MW |



SINTEF CHALMERS BE SWERIM IN University of TECHNOLOGY

#### **REC Solar – OPEX details**



- Maintenance and personnel cost contribute disproportionally for the small plant
- Regardless of plant size
  - 1 operator per shift
  - 1 engineer



# Generic plant

FeSi

- Two furnaces producing FeSi primarily for the iron and steel industry
- Annual CO<sub>2</sub> emission ~ 250 kt

• Furnace off-gas recycling to increase CO<sub>2</sub> concentration is being explored

| Parameter        | Unit | Traditional furnace off-<br>gas, from <u>one</u> furnace* | Off-gas recycling off-<br>gas, from <u>one</u> furnace | <u>One</u> traditional and <u>one</u><br>off-gas recycling<br>furnace |
|------------------|------|-----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|
| CO <sub>2</sub>  | vol% | 4.4                                                       | 15.1                                                   | 6.8                                                                   |
| H <sub>2</sub> O | vol% | 4.3                                                       | 11.8                                                   | 6.4                                                                   |
| N <sub>2</sub>   | vol% | 74.9                                                      | 67.1                                                   | 72.8                                                                  |
| 02               | vol% | 16.4                                                      | 6.0                                                    | 14.0                                                                  |

SINTEF CHALMERS

Excess energy sufficient to capture 90% of the produced  $CO_2$ 

12

### **Generic plant - results**

- Effect of flue gas recycling
- The feasibility and cost of modifying the plant is not considered

| Scenario  | CO <sub>2</sub> capture details                                                           | Specific reboiler duty,<br>SRD      | Steam supply/need     |
|-----------|-------------------------------------------------------------------------------------------|-------------------------------------|-----------------------|
| 3a (ref.) | Two furnaces no<br>recycling, <b>4.4 vol%</b> CO <sub>2</sub> ,<br>90% capture rate       | 3.34 MJ/kg CO <sub>2</sub> captured | <b>WHSG</b> , 23.6 MW |
| 3b        | Two furnaces recycling<br>in both, <b>15.1 vol%</b> CO <sub>2</sub> ,<br>90% capture rate | 3.15 MJ/kg CO <sub>2</sub> captured | <b>WHSG</b> , 22.3 MW |
| Зc        | Two furnaces only one with recycle, <b>6.8 vol%</b> CO <sub>2</sub> , 90% capture rate    | 3.26 MJ/kg CO <sub>2</sub> captured | <b>WHSG</b> , 23.0 MW |





# Silicon - partial capture

The investigated plants had sufficient energy to capture 90%

- Alternative use of the excess heat is for district heating
- Partial capture seasonal capture
- Assumptions
  - Waste heat for district heating is only sold during the winter months (six months of the year)
  - That the waste heat can be used "free of charge" for CO<sub>2</sub> capture during the summer months
  - Full-sized capture plant is built (capacity to capture 90% of the CO<sub>2</sub> produced at the given time)
  - The value of the steam as district heating was set to 16.67 €/t
  - All year capture includes a loss of revenue from sales of district heating during winter

#### Seasonal capture – results



Summer only capture results in a change from OPEX to CAPEX as main contributors for the cost



Final remarks (1)

The overall conclusion: Utilise waste heat for CO<sub>2</sub> capture

- REC Solar
  - The low CO<sub>2</sub> concentration and small source makes CO<sub>2</sub> capture costly
  - A relatively small increase in  $CO_2$  concentration, ~ 4 vol%, is beneficial as expected,
  - the same is found for increased plant size
- Generic plant
  - Current  $CO_2$  concentration ~4 vol%  $CO_2$ , flue gas recycling can increase it to ~ 15 vol%
  - The higher concentration makes CO<sub>2</sub> capture less costly, but needs to be weighted against the changes needed in the process
  - Higher concentrations may also make other capture technologies attractive



Final remarks (2)

- Seasonal/partial capture
  - Seasonal capture could under the right circumstances be considered
  - The results are highly dependent on the value of district heating
  - A further investigation into the possibility of combining heat for CO<sub>2</sub> capture and district heating is recommended
  - Should be assessed for plants larger in size and/or with a higher CO<sub>2</sub> concentration



Webinar – June 25<sup>th</sup>

- Ragnhild Skagestad, SINTEF Industry
  "The CO<sub>2</sub>stCap project and overall results"
- Max Bierman, Chalmers
  "Scenario for near-term implementation of partial capture from blast furnace gases in Swedish steel industry"
- Anette Mathisen, SINTEF Industry
  "CO<sub>2</sub> capture opportunities in the Norwegian silicon industry"
- Jens Wolf, RISE Bioeconomy
  "Partial Capture of CO<sub>2</sub> From a Pulp Mill with Focus on Cost Reduction"



The CO2st Cap project and overall results

#### Sign up to the webinar here:

Tue, Jun 25, 2019 2:00 PM - 3:00 PM CEST









www.sintef.no/co2stcap

