

www.

IEAGHG-IEA Technical study: Homogenized Cost review of CO₂ capture in the cement and iron and steel industries

Monica Garcia Technology Analyst, IEAGHG TCCS-10, June 18-19th 2019, Trondheim (Norway)

Views, findings and publications of the IEAGHG do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

Who are we?

Our internationally recognised name is the IEA Greenhouse Gas R&D Programme (IEAGHG). We are a Technology Collaboration Programme (TCP) and are a part of the International Energy Agency's (IEA's) Energy Technology Network.

<u>Disclaimer</u>

The IEA Greenhouse Gas R&D Programme (IEAGHG) is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publications of the IEA Greenhouse Gas R&D Programme do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

Powering. Reliable. Future.

The cost review method

Garcia M., Berghout N. (2019), **Toward a** common method of cost-review for carbon capture technologies in the industrial sector: cement and iron and steel plants. International Journal of Greenhouse Gas Control 87, 142-158

The problem

- There are substantial differences between cost methods used by different organisations and initiatives to evaluate CCS technologies for the industrial sector.
- The communication of results varies from one organisation to another (CO₂ capture costs, CO₂ avoided costs and manufacturing costs)→ confusion, misunderstanding, unfair comparison.

Cost Categories	CEMCAP (2017)	NETL (2014)	IEAGHG (2013)	Kuramochi (2012)	
BEC					-
	Total equipment costs Installation	Process equipment Supporting facilities	Civil, steelworks,	Installation costs	.,
	costs	Direct and indirect	erection others		
		Labour			
EPC					
	Indirect costs	EPC contractor services	EPCC	Engineering services	
	Project	Process contingency	Project		
	contingency	Project contingency	contingency and fees		
	Owner Costs	Owner Costs	Owner Costs	Owner Costs	
	Total Plant Cost (TPC)	Interest during construction	Working capital, start-ups, spare parts	Total Plant Cost (TPC)	
			Interest during construction	Interest during construction	
		Total as spent cost (TASC)	Total Capital Requirement (TCR)	Total Capital Requirement (TCR)	

Capital Cost Element	CEMCAP (2017)	NETL (2014)	IEAGHG (2013)	Kuramochi		
Process equipment cost (PEC)	Process simulation with optimized design	Summing up individual equipment	Summing up individual equipment	From Original Study *		
Supporting facilities cost	NA	NA	NA			
Others	NA	Initial solvent and corrosion inhibitor : 0.035+0.02% TPC	Civil, steelworks, erection others: 108% PEC			
BEC**						
Engineering service cost	Quantified as indirect costs (14%), with a breakdown	8.50% of BEC	EPCC: 6.87% of BEC	130% of PEC		
EPC		NA				
Process contingency	From 0 to 40% depending on the technology status		10% of Installed costs			
Project contingency	Owner costs and contingencies vary from 19 % to 40% l of the total EPC cost, depending on maturity level	21.70% of BEC	(here EPC) as contingencies and fees			
Others	NA	NA	NA			
Total Plant Costs (TPC)						
Owner costs	NA	24.31% TPC	7% of TPC			
Others	NA	NA	4.7% of TPC			
Total Overnight Cost (TOC)	NA			10% of TPC		
Interest during construction (IDC)	NA	9.9% of TOC	3.8% of TPC			

Total Capital Poquiromont (TCP)

The objectives

- To develop a method based on a bottomup analysis which allows for a comparative assessment of CO₂ capture technologies in the industrial sector
- Conduct a consistent assessment of the techno-economic performance of CO₂ capture technologies applied to the cement and iron and steel industries

The objectives

- IEAGHG & IEA joint efforts to:
 - Provide a tentative set of parameters and assumptions to take into account on the evaluation of the cost of CCS in the cement and iron and steel sectors.

- To homogenise CCS costs reported in the literature for the cement and iron and steel sectors
- Perhaps: A number of assumptions are onsite specific and cannot be extrapolated → how to communicate transparent evaluations by describing technical and economic parameters to include in future studies. Limitations are given

The objectives

- IEAGHG & IEA joint efforts to:
 - Compare the set of cost assumptions given in transparent studies and this work → Partly explain the cost differences reported in the literature.
 - Identify cost-methods

 Identify assumptions: process configurations, energy supply/demand,

Phases of this study

 Selection of transparent studies

Screening of publications

- North West European context
- Materials and energy flows for an average plant (plant size, capacity factor, grid CO₂ intensity, CO₂ compression outlet)
- CAPEX, OPEX
- Cost metrics

- As in the literature
- No waste heat
- No selling electricity to the electricity grid

Assessment of technologies under three scenarios Sensitivity analysis

- Select technologies to go under analysis
- Under basic scenario: still differences on how the technologies were assessed

The proposed solution

- To standardize cost measures and metrics
- To define and homogenise boundaries
- To define and quantify elements of CCS cost: CAPEX, OPEX
- To define and homogenise technical and financial parameters

Limitations

- The **underlying data** and process designs of the manufacturing and carbon capture systems differ between the reviewed studies. Different process designs selected by the authors of the studies
- Several studies provided insufficient information required for the standardisation process
 - Additional assumptions were made
 - Detailed cost estimations tend to present higher costs
- Technological improvements in capture technologies that have taken place over recent years are not necessarily reflected in the quantitative results
- The energy or steam production technologies differ among studies, affecting the CAPEX and fixed OPEX
- In the cases of steelmaking, the blast furnace and basic oxygen furnace route (w/o CO₂ capture) was used as the reference case against the costs of all other cases, including configurations with advanced steelmaking processes
- The results should be corrected using **location** cost factors, as presented in IEAGHG (2018), to determine the techno-economic performance for specific locations.

Assumptions for alternative scenarios

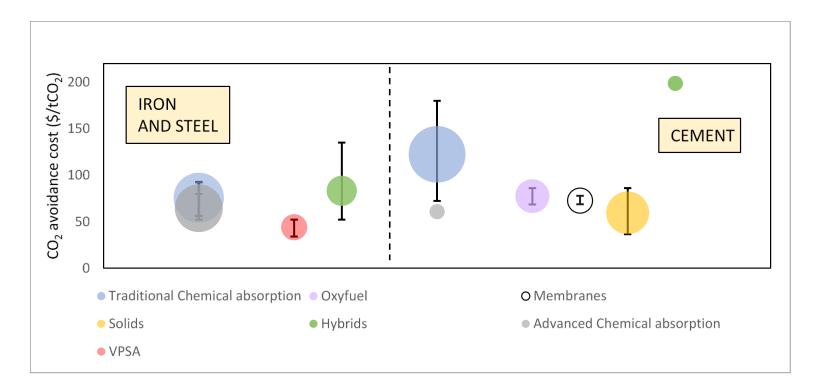
- NO waste heat
 - If required, a new natural gas-fired boiler was assumed to be built to supply the steam, with a CAPEX of 85€/KW and an additional 2% of such CAPEX as operational cost.
 - From the results, it helped to homogenise the "most optimistic" studies on waste heat recovery
- If there is electricity surplus, that cannot be sold to the electricity grid, neither obtaining "environmental" revenue

Results after applying the cost-review method

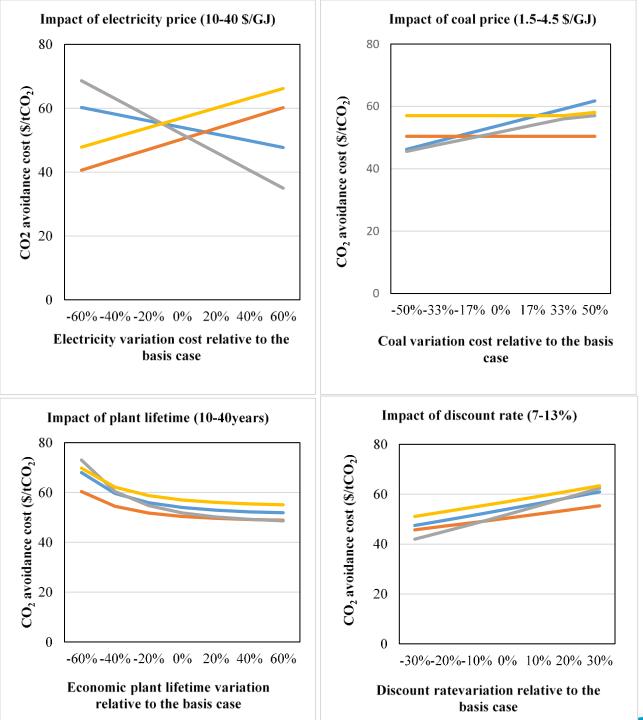
IEAGHG 2018-TR03, Cost of CO₂ capture in the industrial sector: Cement and Iron and Steel industries, Sept 2018

											Cash -
				Cement					Iron and S	teelg	
COST PARAMETER	SCENARIO	Traditional chemical absorption	Advanced chemical absorption	Membrane	Оху-	Solids- based	Hybrid ^d	Traditional chemical abs.	Advanced chemical abs.	VPSA	Hybrid ^e
	BASIS	72-180	61	69-78	69-86	38-86	199	56-82	52-80	34-52	65-135
CO ₂ avoidance	No-heat- recovery	77-215	91	69-78ª	69-86ª	64-348	261	56-119	28-70	34-52ª	81-135
cost (\$ ₂₀₁₆ / t CO ₂ avoided)	No electricity export	72-215	61	69-78 ^b	69-86 ^b	38-91	199 ^b	69-93	12-37 ^f	34-52 ^b	52-90
CO ₂	BASIS	34-79	45	51-57	50-63	11-63	146	16-21	7-16	11-14	23-66
captured cost (\$ ₂₀₁₆ / t	No-heat- recovery	34-93	59	51-57ª	50-63ª	21-68	171	17-30	7-18	11-14ª	33-66
CO ₂ captured)	No electricity export	36-101	45	51-57 ^b	50-63 ^b	20-67	146 ^b	7-23 ^f	3-9 ^f	11-14 ^b	33-44
Increase of	BASIS	46-116	20	39	38-39	26-40	94	54-93	74-76	30-45	69-86
manufacturi ng cost ^c	No-heat- recovery	46-116	26	39ª	38-39ª	37-65	110	54-117	77-78	30-45ª	69-86ª
(\$ ₂₀₁₆ / t cement or steel)	No electricity export	49-116	20	39 ^b	38-39 ^b	40-74	94 ^b	39-117 ^f	36-37 ^f	30-45 ^b	69-86 ^b
1											

Δ



More information: Sensitivity analysis


Garcia M., Berghout N., Herraiz L. (2018) **CO₂ Capture in the Cement and Iron and Steel Sectors: A Homogenised Techno-Economic Review,** GHGT-14 Proceedings

Overview

We cannot select the BEST technology for each sector. The review covered a wide range and the cost is very site-specific

- Expected impact of key parameters on the costs
- Site and regionspecific

Let's summarize

- Main differences found on the literature review
 - Waste heat available for the Capture process / Heat integration
 - Energy production/ Energy cost
 - Steam production/ Steam cost
 - Revenue from selling electricity to the electricity grid
- We provided a cost-review method to homogenise the CO₂ capture/avoidance costs and increase on the manufacturing cost
- Still, our <u>method has limitations.</u> This work is part of a bigger initiative
- Best technology? Difficult to choose one. Based on specific conditions

Questions? monica.garcia@ieaghg.org

