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Experimental  

• Physical Properties 

• Equilibrium  

• Kinetics 

 

Modelling 

• Energy consumption 

• Heat of reaction 

• Thermodynamics  

• Kinetics 

 

Simulation 

• Variance analysis 

• Optimization of energy use 

• Optimization of packing 

• Rate based approach 

• Equilibrium approach 

• Aspen Plus 

• Cape-Open 

Pilot tests 

• Real life tests 

• Solvent study 

• Packing testing 

• Energy requirements 

• Mass transfer 
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Overview 

 

 

Benchmarking overall mass transfer 

Energy consumption 

 

Benchmarking solvent capacity 
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Ideal solvent for postcombustion CCS 

Low capital costs 

 High mass transfer rates 

Low operational costs 

 High solvent capacity 

 Low energy demand for regeneration 
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Solvents 

K2CO3

Alkanolamines are the most prominent group of solvents for CO2 capture 

Carbonate salt 
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K2CO3
PZ 

Solvents in CCS 

Primary amine Tertiary amine Carbonate salt 

Absorption rate of CO2 

Secondary amine 

Carbonate salt solutions and tertiary amines are not even 

considered as potential solvents because of slow absorption 

kinetics  

∆𝑯𝑹≈ 𝟖𝟎 − 𝟖𝟓 
𝒌𝑱

𝒎𝒐𝒍
 ∆𝑯𝑹≈ 𝟓𝟎 − 𝟔𝟓

𝒌𝑱

𝒎𝒐𝒍
 ∆𝑯𝑹≈ 𝟏𝟓 − 𝟐𝟕 

𝒌𝑱

𝒎𝒐𝒍
 ∆𝑯𝑹≈ 𝟕𝟓 − 𝟖𝟓 

𝒌𝑱

𝒎𝒐𝒍
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K2CO3
PZ 

Primary amine Tertiary amine Carbonate salt 

Absorption rate of CO2 

Secondary amine 

∆𝑯𝑹≈ 𝟖𝟎 − 𝟖𝟓 
𝒌𝑱

𝒎𝒐𝒍
 ∆𝑯𝑹≈ 𝟓𝟎 − 𝟔𝟓

𝒌𝑱

𝒎𝒐𝒍
 ∆𝑯𝑹≈ 𝟏𝟓 − 𝟐𝟕 

𝒌𝑱

𝒎𝒐𝒍
 ∆𝑯𝑹≈ 𝟕𝟓 − 𝟖𝟓 

𝒌𝑱

𝒎𝒐𝒍
 

The enzyme carbonic anhydrase (CA) can catalyze the reaction of 

bicarbonate forming solvents and speed up the absorption rates 

𝑪𝑶𝟐 + 𝑯𝟐𝑶
𝑪𝑨

𝑯+ + 𝑯𝑪𝑶𝟑
− 

Solvents in CCS 



WWC Experiments 
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Determine effect of: 

• Temperature (298- 333 K) 

• Solvent loading  

Solvent Solvent type 

30 wt% MDEA + 8.5 g/L CA Enzyme enhanced solvent 

30 wt% MDEA + 5 wt% PZ Chemically promoted solvent 

30 wt% MEA Primary amine 

Comparison of absorption behavior of conventional solvents and 

enzyme ehanced solvents on a wetted wall column 



WWC – measurements 
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Measurement of absorption kinetics 

Comparison of different solvents 

 



• Opposing trends for 

conventional and enzyme 

enhanced solvents 

• Reaction kinetics increase for 

conventional solvents 

• Enzyme kinetics are not 

increasing with temperature 
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Temperature (K) 

MEA MDEA + PZ MDEA + CA 30 wt% MEA, unloaded 

30 wt% MDEA 5 wt% PZ, unloaded 

30 wt% MDEA + 8.5 g/L CA, unloaded 

Effect of temperature on CO2 mass transfer 
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• Rapid decline in mass 

transfer upon loading for 

conventional solvents  

• Just slight deline in mass 

transfer for enzyme 

enhanced solvents 

Effect of solvent loading on CO2 mass transfer 

30 wt% MEA,  

30 wt% MDEA 5 wt% PZ,  

30 wt% MDEA + 8.5 g/L CA 
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Reaction Rates: 

Conventional solvents: 

 
 Dependent on active amine concentration 

 

Enzyme enhanced solvents: 

 
 

 

 

Independent on active amine concentration 
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Effect of solvent loading on CO2 mass transfer 

Different reaction mechanism can explain the different mass transfer of conventional and 

enzyme enhanced solvents. 

 

Modelling results [1] [2] [3] 
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Benchmark of experiments 

Comparison of the average liquid side mass transfer coefficient as well 

as the cyclic capacity of the different solvents  



Definition of average kliq by Li and Rochelle [4]. 
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Benchmark of experiments 

[4] L. Li, H. Li, O. Namjoshi, Y. Du, and G. T. Rochelle, “Absorption rates and CO 2 solubility in new 

piperazine blends,” Energy Procedia, vol. 37, pp. 370–385, 2013. 
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Comparison of the average liquid side mass transfer coefficient as well 

as the cyclic capacity of the different solvents  
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Benchmark of experiments 

40 wt% PZ 

30 wt% PZ 

30 wt% AMP 

9/42 wt% 

PZ/MDEA 

21/29 wt% 

PZ/MDEA 
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conventional amines

30 wt% MEA

5/30 wt% PZ/MDEA

30 wt% MDEA 8.5 g/L CA

Comparison of the average liquid side mass transfer coefficient as well 

as the cyclic capacity of the different solvents  

• Enzyme enhanced MDEA has 

highest average kliq in own 

experiments 

• Just solvents with high PZ 

concentration (>21%) have a higher 

mass transfer 

• MDEA+CA solvents have a 

comparable cyclic capacity at 298 K 
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Benchmark of experiments 

Comparison with literature values [5] 

• Enzyme enhanced MDEA has 

highest average kliq in own 

experiments 

• Just solvents with high PZ 

concentration (>21%) have a higher 

mass transfer 

• MDEA+CA solvents have a 

comparable cyclic capacity at 298 K 

 

30 wt% MEA 

5/30 wt% 

PZ/MDEA 

30 wt% MDEA 

8.5 g/L CA 
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[5]: G. T. Rochelle, “Conventional amine scrubbing for CO 2 capture,” 

in Absorption-Based Postcombustion Capture of Carbon Dioxide, 

2016. 
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Benchmark of experiments 
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at 40°C 
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Enzyme enhance solvents show a good performance compared to conventional solvents, 

because of the high mass transfer at higher solvent loadings (higher driving forces in the 

bottom of absorber) 



• Reaction mechanism of enzymes different than amines 

  

• Enzyme enhanced solvent have potential to utilize lower 

absorption temperature to maximize cyclic capacity  

 

• Enzyme enhanced solvents show comparable mass transfer 

as well as cyclic capacity compared to conventional solvents 
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Conclusion 

Need of precise process modelling for comparison and 

benchmark of total systems  

(See also our Poster: Process Model Validation of enzyme 

enhanced CO2 capture) 



Thank you for your attention 
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