Trondheim 10th CCS Conference-CO₂ Capture, Transport and Storage June 17-19, 2019

Post Combustion CO₂ Capture via Chemical Absorption with Amino Acid Salts Solutions

Antonio Conversano, Andrea Porcu, Mauro Mureddu, Alice Masili, Manuele Gatti

Background

- The present work has been carried out in the framework of a collaboration between LEAP (Laboratory of Energy and Environment Piacenza)-Politecnico di Milano and Sotacarbo Research Center
- The activity is partially funded by the Regional Government of Sardinia (FSC 2014-2020) within the "Centre of Excellence on Clean Energy" project (CUP D83C17000370002)

Objective

- Research project on alternative solvents for chemical absorption applied to CO₂ for post-combustion capture applications
- Alternative solvents to be investigated → Amino Acids (green solvents)
- CCS technology applied to Natural Gas Combined Cycle (NGCC) flue-gas
- Reference solvent → 5M MEA solution (30% w/w as from EBTF-CAESAR Project)

Benefits of Amino Acid Salts and their Potential Impact (Literature Information)

- Central carbon atom bonded to carboxyl group, amino group, hydrogen atom, side chain (R)
- R → only difference among the 20 most common amino acids
- R → affects molecular structure, size and electric charge, impacts on water solubility
- In water solutions, the following equilibrium is established (pH environment):

$$HOOC - CHR - NH_3^+ \stackrel{-H^+}{\longleftrightarrow} ^- OOC - CHR - NH_3^+ \stackrel{-H^+}{\longleftrightarrow} ^- OOC - CHR - NH_2$$
(I) (II) (III)

cationic (I), zwitterionic (II) or anionic (III) form

Form III: CO₂ reactive, zwitterionic
 mechanism → + strong base, basic pH

MATERIALS and METHODS

Equipment

- Glass column (adiabatic)
- 90 cm packed bed (metallic Raschig rings)
- Online analyser and micro GC for CO₂ gas concentration
- Mass flowmeter (gas side) and volumetric flowmeter (liquid side)

Open Cycle

- Counter current absorption of 4% CO₂ rich gas (open cycle) with tested solution at given concentration
- Rich loading over 90 cm absorption
- Removal calculation over 90 cm absorption

MATERIALS and METHODS

Equipment

- Glass column (adiabatic)
- 90 cm packed bed (metallic Raschig rings)
- Online analyser and micro GC for CO₂ gas concentration
- Mass flowmeter (gas side) and volumetric flowmeter (liquid side)

Closed Cycle

- Counter current absorption of 4% CO₂ rich gas (open cycle) with tested solution at given concentration
- Test duration → until saturation
- Loading curves, maximum loading, capacity
- Identification of an Open Cycle Equivalent time lapse and related figures of merit (e.g.: removal, partial capacity)

Solvent Selection: Potassium Prolinate vs. MEA

0 : K+

2015)

FOCUS ON: non-precipitating solvents

	C	T	Density	Viscosity	H_{CO2}	$\mathbf{p}_{\mathbf{CO2}}$	N _{CO2}	kov	D	pKa	Reference
	[M]	[K]	$[kg/m^3]$	[mPa*s]	[kPa*m³/kmol]	[kPa]	10 ⁻³ [mol/m ² s]	[s ⁻¹]	[10 ⁻⁹ m ² /s]	[-]	
ProK	0.97	303	1058.6	1.27	4384	2.92	4.00	26632	1.08		(Hamborg et al., 2008; Paul and
,	2.00	303	1118.8	2.00	5806	3.09	4.58	71940	0.988		
	3.03	303	1167.8	3.46	7854	3.19	4.05	130855	0.819	10.64	Thomsen, 2012)
MEA :	5.00	298	1010.6	2.48	3320	4.00	1 (@ 3M, 40°C)	90800	1.65	9.5	(Amundsen et al., 2009; Bui et al., 2014; Feron, 2016; Freguia, 2002; Hall, 1957; Luo et al.,

- Higher AA viscosity and Henry constant
- Higher AA kinetic constant and N-CO₂
- Lower AA diffusivity
- → Solvent screening to include energy performance (e.g.: heat of regeneration)

	OPEN CYCLE		CLOSED CYCLE		UNIT
	MEA	MEA	ProK-test 1	ProK-test 2	
	111.71	111.86	111.79	111.81	mol/h
CO ₂	4.63	4.78	4.71	4.72	mol/h
N_2	107.08	107.08	107.08	107.08	mol/h
CO_2	0.1	0.1	0.1	0.1	Nm³/h
N_2	2.4	2.4	2.4	2.4	Nm³/h
	3.5	3.5	3.4	3.8	l/h
	3.5	3.5	3.8	4.4	kg/h
	155	155	155	155	mol/h
Solvent		20%	20%	//2/28%	w/w
	3070	3070	3070	45.5670	VV VV
	5.0	5.0	2.2	3.2	mol/L
	9	12.5	9.4	8.2	°C
	22	18	18	19	°C
	1.39	1.39	1.39	1.39	mol/mol
	N ₂	MEA 111.71 CO ₂ 4.63 N ₂ 107.08 CO ₂ 0.1 N ₂ 2.4 3.5 3.5 3.5 155 30% 5.0 9 22	MEA MEA 111.71 111.86 CO2 4.63 4.78 N2 107.08 107.08 CO2 0.1 0.1 N2 2.4 2.4 3.5 3.5 3.5 3.5 155 155 30% 30% 5.0 5.0 9 12.5 22 18	MEA MEA ProK-test 1 111.71 111.86 111.79 CO2 4.63 4.78 4.71 N2 107.08 107.08 CO2 0.1 0.1 0.1 N2 2.4 2.4 2.4 3.5 3.5 3.5 3.8 155 155 155 155 30% 30% 30% 30% 5.0 5.0 2.2 9 12.5 9.4 22 18 18	MEA MEA ProK-test 1 ProK-test 2 111.71 111.86 111.79 111.81 CO2 4.63 4.78 4.71 4.72 N2 107.08 107.08 107.08 107.08 CO2 0.1 0.1 0.1 0.1 N2 2.4 2.4 2.4 2.4 3.5 3.5 3.4 3.8 3.5 3.5 3.8 4.4 155 155 155 155 30% 30% 30% 43.38% 5.0 5.0 2.2 3.2 9 12.5 9.4 8.2 22 18 18 19

MEA Open Cycle Test (from Data Analysis)

Loading

~0.1 molCO₂/molALk

MEA vs. ProK Closed Cycle Test (from Data Analysis)

DISCUSSION

- ★ Precipitation detected
- From data analysis
- Faster loading increase detected during ProK tests
- Lower maximum loading achieved by 43.38%w/w ProK (0.44 molCO₂/molAlk)
- Comparable maximum loading of ProK and MEA 30%w/w (respectively 0.53 vs. 0.52 molCO₂/molAlk)

DISCUSSION

	MEA-Closed Cycle	ProK-Test 1	ProK-Test 2 43.38%	
_	30% w/w	30% w/w	w/w	Unit
Circulating solute $-n_{Alk}$ (MEA/ProK)	5.42	2.23	3.38	mol
Circulating solvent (water+solute)	1.103	1.138	1.193	kg
Mole of CO ₂ absorbed	2.83	1.19	1.50	mol
Calculated Loading (end of test)	0.52	0.53	0.44	molCO ₂ /molAlk
Calculated Capacity	2.57	1.04	1.25	molCO ₂ /kg solvent
Time period of Open Cycle Equivalent Mole of CO ₂ absorbed Open Cycle	0-0.48	0-0.39	0-0.54	h
Equivalent	0.88	0.76	1.09	mol
Partial capacity (end of Open Cycle Equivalent)	0.80	0.67	0.91	molCO ₂ /kg solvent
Average absorption (Open Cycle Equivalent)	36.5	37.4	37.8	%

CONCLUSION

Final Considerations

- ProK solutions (30% and 43.38%w/w) have been tested at bench-scale to investigate CO₂ absorption from synthetic NGCC flue gas;
- Faster loading increase of ProK vs. MEA
- Similar maximum loading of MEA vs. ProK 30%w/w;
- Calculated capacity at the end of the MEA closed cycle test is the highest one among the three assessed (2.57 molCO₂/kg_{solvent});
- Open cycle equivalent time-lapse \rightarrow 43.38% w/w ProK shows higher partial capacity compared to MEA (0.91 vs. 0.80 molCO₂/kg Solvent)
- Open cycle equivalent time-lapse \rightarrow comparable CO₂ removal among the 3 cases

Future Work

- Investigation of other AA for NGCC flue gas decarbonisation
- Modelling and experimental campaigns to estimate the AA regeneration duty
- Definition of thermodynamic models and techno-economic assessment for a comprehensive evaluation of AA performance

Thank You for Your Attention

For more info: antonio.conversano@polimi.it

Motivation

- Amines → Primary, secondary and tertiary
- Unhindered (primary or secondary) amines form a fairly stable carbamate → high energy requirement for solvent regeneration
- Hindered (tertiary) amines form an unstable carbamate and have a higher theoretical capacity
- Tertiary amines regeneration is less energy-demanding than unhindered amines
- Low rates of absorption make tertiary amines difficult to be used for CO₂ gas removal
- MEA considered a benchmark in the field of CO₂ capture via chemical absorption → economical technology
- MEA+ CO₂ → high reaction rate and capacity, low molecular weight and cost, high heat of regeneration (~3.5-3.9 GJ/ton CO₂);
- MEA is affected by vaporization losses due to high vapor pressure, it is corrosive and it forms degeneration products (oxidative and thermal degradation), toxicity issues

