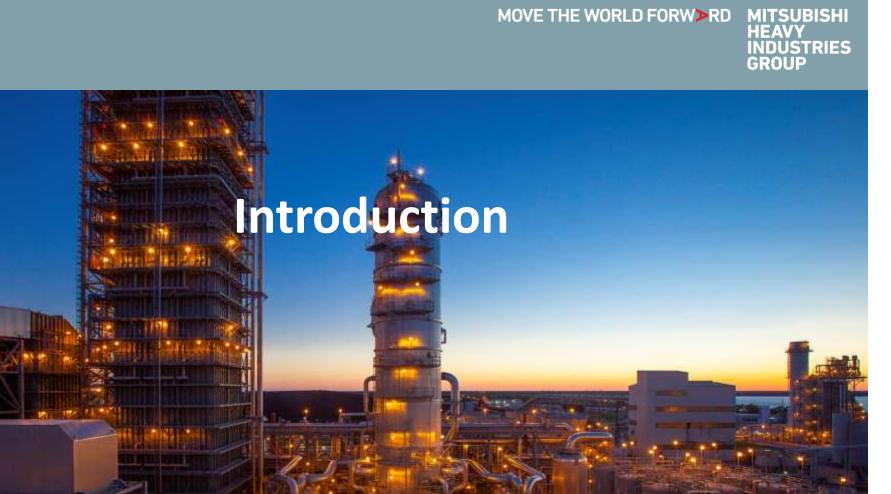
Reducing CO₂ capture cost by 30% using Advanced KM CDR Process[™]

TCCS-10 Trondheim Norway, 18 June

Takashi Kamijo


📩 MITSUBISHI HEAVY INDUSTRIES ENGINEERING

✓ Introduction

- ✓ KM CDR Process[™] Features & Experiences
- ✓ Advanced KM CDR Process[™]
- ✓ New KS-21[™] Solvent Development
- ✓ Summary

MOVE THE WORLD FORW>RD

Mitsubishi Heavy Industries

- **Established in 1884**
- Number of employees: 80,652 (consolidated)
- Annual Revenue (2016): USD \$36.6 billion

GTCC Power Plant

J-series Gas Turbine

Compressor

Industry & Infrastructure

Transportation system

Passenger Ship

Flue gas CO₂ Recovery

Chemical Plant

Machine Tool

Forklift Truck

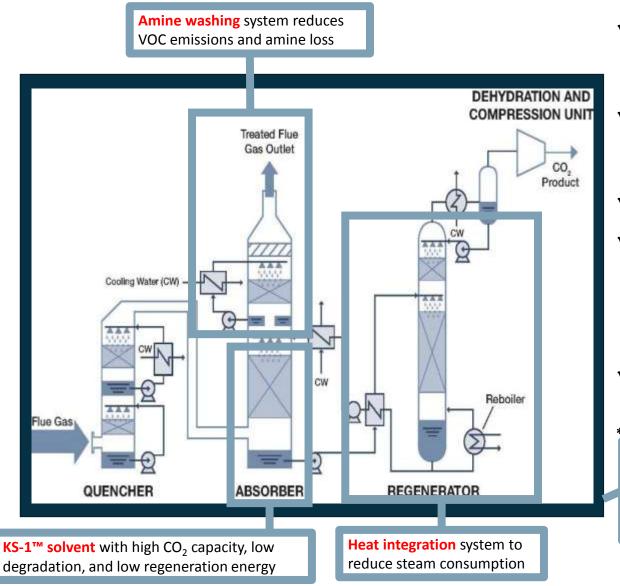
Aircraft, Defense & Space

H-II Rocket

Space Station

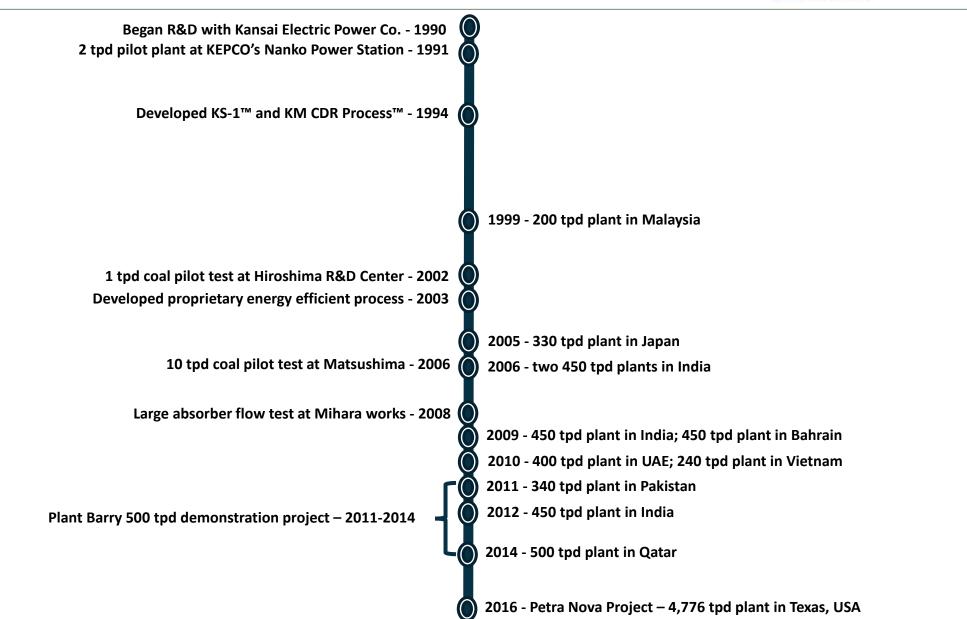
Air Craft

MOVE THE WORLD FORW>RD

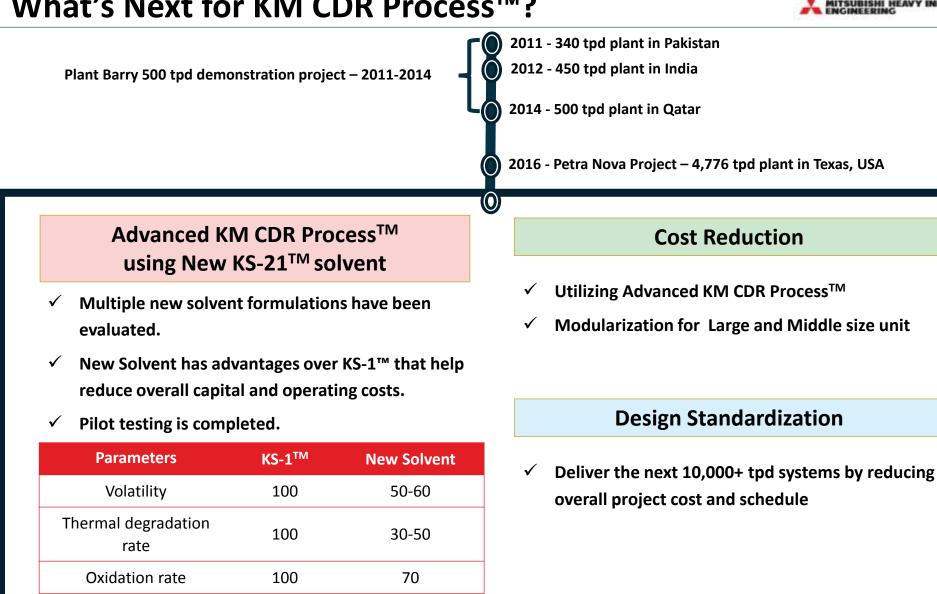

MITSUBISHI HEAVY INDUSTRIES GROUP

KM CDR ProcessTM – Features & Experiences

CONFIDENTIAL


MITSUBISHI HEAVY INDUSTRIES

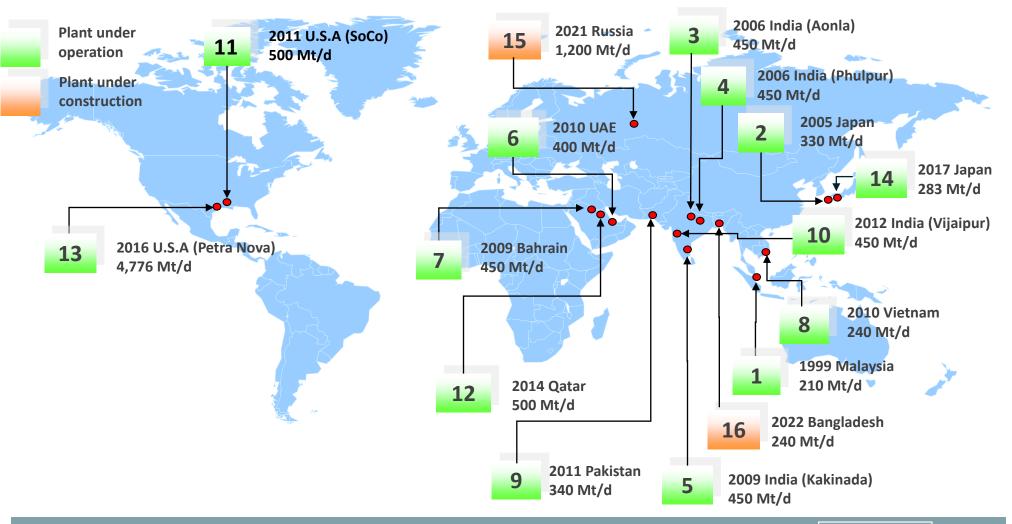
KM CDR Process™ Overview and Features


- ✓ KM CDR Process™ = Kansai Mitsubishi Carbon Dioxide Recovery Process
- ✓ Jointly Developed by MHI Engineering & Kansai Electric Power Company (KEPCO)
- Amine-based technology
- Capable of capturing ~90+% CO₂ from combustion gas sources for variety of usages such as EOR*, Urea & Methanol production and other general use.
- Proprietary features developed over
 28 years of experience
- * FOR = Enhanced Oil Recoverv
 - Automatic load adjustment control
 - Amine filtration and purification systems
 - Proven tower design for even gas/liquid distribution

KM CDR Process[™] Technology Development Timeline _↓

What's Next for KM CDR Process™?

85


100

Heat of absorption

Delivery Record of KM CDR Process[™]

World's largest delivery of CO₂ capture plant for over 100 tpd capacity;
 13 plants under commercial operation and 2 under construction

Commercial Plants of KM CDR Process[™]

World's leading large scale post-combustion CO₂ capture technology licensor 13 plants in operation and 2 under construction, from a variety of natural gas, heavy oil, and coal flue gas sources.

- ✓ Commercialized since 1999
- ✓ Various flue gas sources: Natural gas, heavy oil, and coal

Year of Delivery	Country	Flue Gas Source	CO ₂ Capacity (TPD)	Application
1999	Malaysia	NG Fired Furnace	210	Urea Production
2005	Japan	NG and Heavy Oil Boiler	330	General Use
2006	India	NG Fired Furnace	450	Urea Production
2006	India	NG Fired Furnace	450	Urea Production
2009	India	NG Fired Furnace	450	Urea Production
2009	Bahrain	NG Fired Furnace	450	Urea Production
2010	UAE	NG Fired Furnace	400	Urea Production
2010	Vietnam	NG Fired Furnace	240	Urea Production
2011	Pakistan	NG Fired Furnace	340	Urea Production
2012	India	NG Fired Furnace	450	Urea Production
2014	Qatar	NG Fired Furnace	500	Methanol Production
2016	USA	Coal-Fired Boiler	4,776	Enhanced Oil Recovery
2017	Japan	Gas Fired Furnace	283	General Use
2021	Russia	NG Fired Furnace	1,200	Urea & melamine Production
2022 (Planned)	Bangladesh	NG Fired Furnace	240	Urea Production

MOVE THE WORLD FORW>RD H

MITSUBISHI HEAVY INDUSTRIES GROUP

Advanced KM CDR ProcessTM

CONFIDENTIAL

- ✓ KM CDR Process[™] using KS-1[™] is a fully commercial proven, however further reduction of CO₂ capturing cost is desirable to make more CCS or CCUS projects realize.
 - DOE/NETL CO₂ Cost Goal 2020 2nd Generation: \$40/ton 2025 Transformational: Less than \$40/ton
- ✓ Advanced KM CDR Process[™] is developed as MHI's next-generation process following after KM CDR Process[™] technology
- Commercialization is coming soon. Expects to offer for new commercial projects in 2019.

MITSUBISHI HEAVY INDUSTRIES

✓ Advanced KM CDR Process[™]

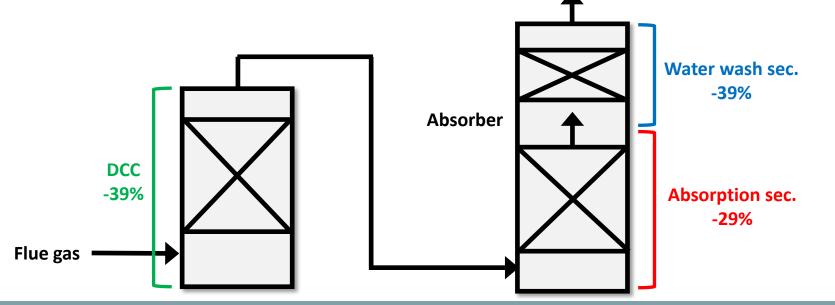
30% CAPEX reduction compared to conventional KM CDR process[™]

✓ Improvement from new technology and lessons learned

- Reduced size of DCC and Absorber
- Reduced design margin
- Compact layout and modular design
- Comparable utility consumptions (no OPEX-CAPEX tradeoffs)
- Automatic operation system

✓ Apply New KS-21[™] solvent

- Reduced solvent consumption
- Less CO₂ compression power due to higher Regeneration pressure


13

Reduced size of DCC & Absorber

- ✓ DCC and Absorber are the major cost centers (>30% of CAPEX)
- ✓ Validated performance & reduced redundancy
 - Validated gas-liquid distribution and packing performance
 - Optimized absorption packing height and configuration
 - Optimized proprietary water wash system

✓ Compact and modular design

- Integrated DeSOx and cooling section in DCC
- Modularized towers minimizing construction cost

14

✓ Process redundancy & risks are significantly reduced after large-scale unit experience

✓ Filtration system:

• Validated PM capture rate and filtration efficiency

✓ Heat exchangers:

• Reduced size by enhanced heat transfer using higher pressure drop

✓ Pumps & Tower internals:

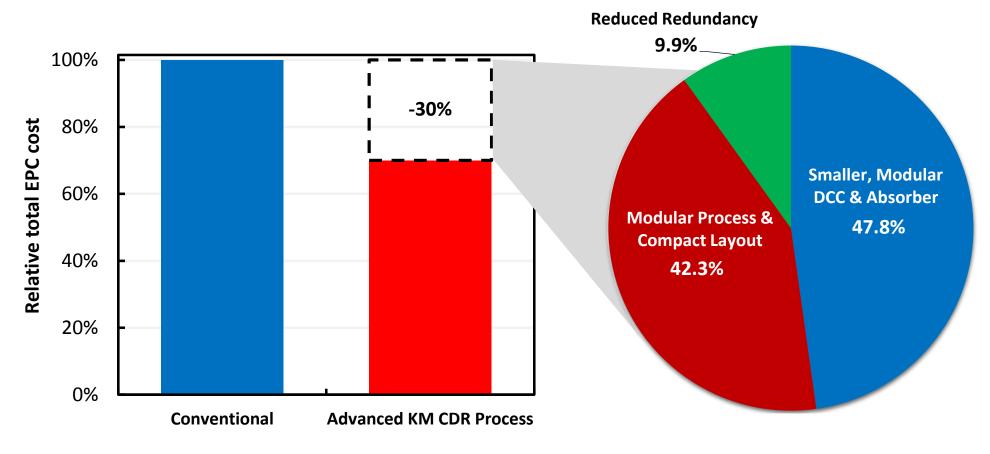
• Reduced tower height and process complexity

Cost Relative to conventional	Conventional	Advanced KM CDR Process [™]
Pumps	100	49
Heat exchangers	100	80
Tower internals	100	74
Filtration system	100	43
Tanks	100	74

SUBISHI HEAVY INDUSTRIE

✓ Modularization

- Pipe rack, heat exchanger/pipe and pump/pipe are fabricated in shop as skids to reduce on-site fabrication, reducing construction labor hours by 60% (excluding large towers)
- In-shop fabrication improves productivity and facilitates schedule and budget control


✓ Optimized plot plan and minimized footprint

• Minimized footprint reduces concrete, structural steel and piping material, resulting lower construction cost.

Spec Relative to conventional	Conventional	Advanced KM CDR Process [™]
Footprint (% in m²)	100	75
Structural steel (% in tonne)	100	76
Piping (% in tonne)	100	79

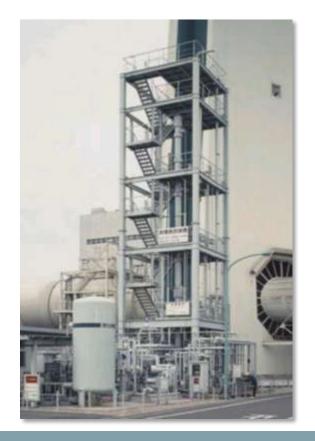
ITSUBISHI HEAVY INDUSTRIE

✓ The Advanced KM CDR Process[™] reduces total EPC cost by 30% and is ready for new commercial projects

Remark: The CAPEX depends on specific condition, and the above result may differ for specific project

TSUBISHI HEAVY INDUSTRIES

MOVE THE WORLD FORW>RD H


MITSUBISHI HEAVY INDUSTRIES GROUP

New KS-21TM Solvent Development

Solvent screening & Pilot test in Nanko Power Plant

- ✓ Potential solvents were selected in terms of reaction speed, VLE, corrosiveness, thermal stability, Oxidative stability, Volatility, and manufacturing cost.
- ✓ A few solvent and optimized combination of component were tested in 2017/2018 campaigns.

Nanko CO ₂ Capture Pilot Plant				
Location	Osaka, Japan			
Flue gas source	Natural-gas boiler			
CO ₂ capacity (tonne/day)	2			
Tested CO ₂ concentration (mol%)	4-20			
Design capture ratio (%)	90			
	Flue gas quencher			
Configuration	Intercooled absorber			
Configuration	Multipul water wash			
	MHI energy saving system			

ITSUBISHI HEAVY INDUSTR

✓ Thermal stability

• Reduce thermal degradation and allow higher stripping T and P, reducing compression work

✓ Oxidative stability

• Reduce amine oxidation and HSS formation rate

✓ Volatility

• Reduce amine loss from emission and cost of water wash system

✓ Cost

• Competitive manufacture cost

Parameters Relative to KS-1 [™]	KS-1 [™]	KS-21 [™]
Volatility	100	50-60
Thermal degradation rate	100	30-50
Oxidation rate	100	70
Heat of absorption	100	85

UBISHI HEAVY INDUSTI

MOVE THE WORLD FORW>RD M H IN

MITSUBISHI HEAVY INDUSTRIES GROUP

Summary

- KM CDR Process[™] has World's largest delivery of CO₂ Capture Plants for over 100 tpd capacity since 1999;
 13 plants under commercial operation including World's largest CO₂ capture plant (Petra Nova) and currently 2 under construction
- 2. Commercially proven & used on Natural gas, Heavy oil, and Coal for many purpose such as Urea, Methanol, EOR and other general usage.
- 3. Reduces CAPEX by 30% using Advanced KM CDR Process[™] & New KS-21[™] solvent
 - Updated technology & Lessons learned
 - Reduce Design margin by reflecting actual performance in recent projects
 - Lower amine emissions
 - Expects to offer for new commercial projects in 2019.

22

MOVE THE WORLD FORW>RD

MITSUBISHI HEAVY INDUSTRIES GROUP

Thank you

Further Question Takashi Kamijo <takashi_kamijo@mhi.co.jp>